Locally Covert Learning

Justin Holmgren
NTT Research

Ruta Jawale
UIUC
Learning Boolean Functions

1. Polynomial-time learner gets access to a function $f : \{0,1\}^n \rightarrow \{0,1\}$

2. Learner’s goal is to output a function h that agrees with f on most inputs.
The Learning Model, Part I

By “\mathcal{H} is learnable”, we mean there exists a learning algorithm that is:

Efficient:
Given accuracy parameter α and confidence parameter δ, learner runs in time $\text{poly}(n, 1/\alpha, \log(1/\delta))$.

(Weakly) Agnostic:
If target function f is ϵ-close to some $h^* \in \mathcal{H}$, the learner outputs a hypothesis h that is $(O(\epsilon) + \alpha)$-close to f, with all but δ probability.

Distribution-Specific: “closeness” is measured wrt the uniform distribution

Improper: Learner can output any circuit, not necessarily in \mathcal{H}.
The Learning Model, Part II

Types of Function Access

Passive Learning:
Learner gets pairs \((x, f(x))\)
for uniformly random \(x\)

Active Learning:
Learner gets oracle access to \(f\).
Passive vs. Active Learning

- quasi-poly time learnable passively
 - [Linial-Mansour-Nisan]

Learnable actively
- poly-size DNF (or CNF)
- poly-size DT
- parity
- polynomially Fourier concentrated

Learnable passively
- log(n)-junta
- not very much stuff...
where's the adversary?
Adversarial Learning

By now a burgeoning field. Includes, but not limited to:

1. **Covert Learning**: [Canetti-Karchmer ’21, IKOS ’19]
 curious eavesdropper tries to piggyback on the queries of an active learner.

2. **Verifiable Learning**: [Goldwasser-Rothblum-Shafer-Yehudayoff ’20]
 untrusted prover claims that a hypothesis h approximates f near-optimally (compared to some class of functions).
Covert Learning
[Canetti-Karchmer ’21, IKOS ’19]

usually i.i.d. uniform or pseudo-uniform queries

active learner

observer

≈

passive simulator

f
(1-of-2) Locally Covert Learning

[IKOS19]
Why Study Covert Learning?
Scenario 1: Delegating Scientific Discovery
[Canetti-Karchmer ’21]

Plan: Learn a function f for which:
random examples are cheap / useless
queries are relatively useful but expensive,

For example, an organism’s genome \rightarrow phenome map

Problem: Want to delegate to specialists, but …
what if they sell resulting data to your competitors?

Solution: use covert learning \implies their data has no resale value
Scenario 2: Verifiable Learning

Same Plan: Delegate the query-learning of a function f; assume cheap but useless random examples for f.

New Problem [Goldwasser-Rothblum-Shafer-Yehudayoff '21]: How to ensure we receive a near-optimal circuit?

One Approach: Tell learner what queries to make (following a covert learning algorithm). Hide “test queries” (using random examples)

⇒ If test queries are correct, most others must be as well.

⇒ If learning algorithm is also “robust” then a few incorrect query answers can’t ruin the output.
Scenario 3: Model Extraction

[Canetti-Karchmer ’21]

Plan: Sell AI as a service (e.g. chat GPT)

• Generally trained on random data (more scalable)

Problem: Can competitor use queries to clone the model?

Defense?? Block users who make weird query patterns

😢 Can’t really work against a covert learner
Passive \leq Covert \leq Active

- Passive
- Covert (assuming LPN) [Canetti-Karchmer]
- Locally Covert [this work]
- Active

- $\log(n)$-junta [IKOS19]
- parity DT
- DNF (or CNF)
- polynomially Fourier concentrated

\leq poly-size \leq
The Goldreich–Levin Theorem

Learning Version:
Given oracle access to f, one can efficiently find all parity functions γ that are even weakly correlated with f.

Crypto Version:
Let g be a OWF. Then $\langle x, r \rangle \pmod{2}$ is hard-core for $(g(x), r)$.

Proof assuming Learning Version:
1. $\langle x, \cdot \rangle \pmod{2}$ is a parity function.
2. If not hard-core, then an adversary $A(g(x), \cdot)$ weakly predicts $\langle x, r \rangle$.
3. GL $A(g(x), \cdot)$ outputs a list containing $x \mapsto$ contradicts that g is a OWF.
Which “Goldreich-Levin Algorithm”?

Rackoff’s Algorithm

- Uses derandomization (querying all subset sums of $\approx \log(n)$ random vectors in \mathbb{F}_2^n)

⇒ Queries are not statistically uniform

The Original [Goldreich-Levin]

- Uses Fourier analysis
- Well-known in learning theory

This Work:

Original algorithm is basically already 1-out-of-2 covert.

Small modification gives $(k - 1)$-out-of-k covertness.
(Locally) Covert Goldreich-Levin Algorithms

Previous Lemma: [Canetti-Karchmer] (following [Rackoff])

Assuming LPN is subexponentially hard, there is a **computationally** covert algorithm for **low-degree** Goldreich-Levin learning

- All log(n)-variable γ s.t. |\(\hat{f}(\gamma)\)| ≥ \(\tau\)
 (except with \(\delta\) probability)

Our Main Theorem (following [Goldreich-Levin]):

For any constant \(k\), there is a **perfectly** \((k - 1)\)-out-of-\(k\) covert algorithm for Goldreich-Levin learning

- All γ s.t. |\(\hat{f}(\gamma)\)| ≥ \(\tau\)
 (except with \(\delta\) probability)
Fourier Analysis Essentials

For \(\gamma \in \mathbb{F}_2^n \), let \(\hat{f}(\gamma) \in [-1,1] \) denote the correlation of \(f \) with the parity function \(\langle \gamma, \cdot \rangle \). Call \(\hat{f}(\gamma)^2 \) the weight of \(\gamma \).

Fact: \(\sum_{\gamma \in \mathbb{F}_2^n} \hat{f}(\gamma)^2 = 1 \). Not many heavy parities.

Lemma: With queries to \(f \), one can efficiently estimate weight \((p) := \sum_{s \in \mathbb{F}_2^{n-k}} \hat{f}(p \circ s)^2 \) for any “prefix” \(p \in \mathbb{F}_2^k \), will prove this later

and 1-of-2 covertly

Not many heavy prefixes.
Weighing Parity Prefixes \implies Goldreich-Levin

Basic Idea: Maintain a list of candidate prefixes of heavy parities γ (those with $\hat{f}(\gamma)^2 \geq \tau$), starting with 1-bit prefixes $\{0,1\}$.

1. Weigh each prefix in the list and throw away light prefixes (those with weight $< \tau$)
 \[\Rightarrow \text{At most } 1/\tau \text{ prefixes.} \]

2. Replace remaining prefixes p by $p \circ 0$ and $p \circ 1$
 \[\Rightarrow \text{At most } 2/\tau \text{ prefixes} \]

3. Repeat until prefixes are n-bit strings.
Lemma:

With queries to f, one can efficiently estimate

$$\text{weight}(p) := \sum_{s \in \mathbb{F}_2^{n-k}} \hat{f}(p \circ s)^2 \text{ for any "prefix" } p \in \mathbb{F}_2^k.$$

More Generally:

With queries to f, one can efficiently estimate

$$\text{weight}(A) := \sum_{\gamma \in A} \hat{f}(\gamma)^2 \text{ for any affine subspace } A \subseteq \mathbb{F}_2^n.$$
How To Weigh Affine Spaces

Lemma:
For any affine subspace $A \subseteq \mathbb{F}_2^n$, $A = \gamma^* + V$, one can efficiently estimate weight$(A) := \sum_{\gamma \in A} \hat{f}(\gamma)^2$

Formula:

$$\sum_{\gamma \in A} \hat{f}(\gamma)^2 = \mathbb{E}_{x_1 + x_2 \in V^\perp} \left[f(x_1) \cdot f(x_2) \cdot \gamma^*(x_1 + x_2) \right]$$

Expectation can be directly empirically estimated
(\(k - 1\))-of-\(k\) Covertness

Previous formula naturally generalizes:
If \(A = \gamma^* + V\) is an affine subspace of \(\mathbb{F}_2^n\), then

\[
\sum_{\gamma \in A} \hat{f}(\gamma)^k = \mathbb{E}_{x_1 + \cdots + x_k \in V^\perp} \left[f(x_1) \cdots f(x_k) \cdot \gamma^*(x_1 + \cdots + x_k) \right]
\]

• To get \((k - 1)\)-of-\(k\) covert GL, apply same strategy, using \(k\)-weight instead of 2-weight
Goldreich-Levin with k-weights

(k even WLOG)

Strategy: Maintain a list of candidate l-bit prefixes of heavy parities γ (those with $\hat{f}(\gamma)^2 \geq \tau$), starting with $\{0,1\}$.

1. Weigh each prefix in the list and throw away light prefixes (those with k-weight $< \tau^{k/2}$)

 \Rightarrow At most $1/\tau^{k/2}$ prefixes because 2-weight $> k$-weight

2. Replace remaining prefixes p by $p \circ 0$ and $p \circ 1$

 \Rightarrow At most $2/\tau^{k/2}$ prefixes

3. Repeat until prefixes are n-bit strings.

$\gamma \overset{\hat{f}}{\rightarrow} f(\gamma)^2 \geq \tau$

$k < \tau^{k/2}$

$1/\tau^{k/2}$ prefixes

$2/\tau^{k/2}$ prefixes

τ can be $1 / \text{poly}(n)$, so running time $n^{O(k)}$
Q3: Covert algorithms in other learning models?

Q4: Is t-out-of-k covert learning easier for $t < k - 1$ than $t = k - 1$?

Q2: Is there a gap for natural classes?

Covert (assuming LPN) [Canetti-Karchmer]
Thanks & Happy Birthday!

ia.cr/2023/392