Locally Covert Learning

Ruta Jawale

Justin Holmgren

NTT Research

Learning Boolean Functions

—

- DJD
1

1. Polynomial-time learner gets access to a function

f:{0,1}* - {0,1}

2. Learner’s goal is to output a function & that agrees with f
on most inputs.

The Learning Model, Part |

By “# is learnable”, we mean there exists a learning algorithm that is:

Efficient:
Given accuracy parameter a and confidence parameter 0, learner runs in

time poly(n, 1/a, log(1/9)).

(Weakly) Agnostic:
If target function fis e-close to some h* € #,

the learner outputs a hypothesis £ that is (O(€) + a)-close to f,
with all but 0 probability.

Distribution-Specific: “closeness” is measured wrt the uniform
distribution

Improper: Learner can output any circuit, not necessarily in #Z .

The Learning Model, Part Il
Types of Function Access

Passive Learning: Active Learning:

Learner gets pairs (x, f(x)) Learner gets oracle access to f.
for uniformly random x

Passive vs. Active Learning

T

where’s the adversary?

Adversarial Learning

By now a burgeoning field. Includes, but not limited to:

1. Covert Learning: [canetti-Karchmer 21, IKOS *19]
curious eavesdropper tries to piggyback on the
queries of an active learner.

2. Verifiable Learning: [Goldwasser-Rothblum-Shafer-Yehudayoff '20]
untrusted prover claims that a hypothesis /

approximates f near-optimally (compared to some
class of functions).

Covert Learning
[Canetti-Karchmer '21, IKOS ’19]

usually i.i.d. uniform or
pseudo-uniform queries

passive simulator

3
]

i o
AN
i s 21
b M) n .
i | ;
2 .

observer

(1-of-2) Locally Covert Learning
[IKOS19]

Why Study Covert Learning?

Scenario 1: Delegating Scientific Discovery
[Canetti-Karchmer ’21]

Plan: Learn a function f for which:
random examples are cheap / useless
queries are relatively useful but expensive,

For example, an organism’s genome — phenome map

Problem: Want to delegate to specialists, but ...
what if they sell resulting data to your competitors?

Solution: use covert learning = their data has no resale
value

Scenario 2: Verifiable Learning

Same Plan: Delegate the query-learning of a function f;
assume cheap but useless random examples for /.

New Problem [Goldwasser-Rothblum-Shafer-Yehudayoff ’21]: HOw to ensure we
receive a near-optimal circuit?

One Approach: Tell learner what queries to make (following a covert
learning algorithm). Hide “test queries” (using random examples)

= [f test queries are correct, most others must be as well.

= |f [earning algorithm is also “robust” then a few incorrect
query answers can’t ruin the output.

Scenario 3: Model Extraction
[Canetti-Karchmer '21]

Plan: Sell Al as a service (e.g. chat GPT)

e Generally trained on random data (more scalable)
Problem: Can competitor use queries to clone the model?
Defense?? Block users who make weird query patterns

@ Can’t really work against a covert learner

Passive S: Covert < Active

—
e Active
ACO \
4 polynomially
— Fourier
// concentrated
. X I Loca_lly Covert
- . [this work]
poly-size -~ poly-size

parity DT
A

DNF (or CNF) /
A

poly-size
(assuming LPN)

Covert
[Canetti-Karchmer]

' Passive
log(n)-junta

IKOS19]

The Goldreich-Levin Theorem

Crypto Version:
Let g be a OWF. Then
(x,r) (mod 2) is hard-core for

(8(x),).

Proof assuming Learning Version:

1. (X,-) (mod 2) is a parity
Learning Version: function.

2. If not hard-core, then an adversary

iven oracl t
Given oracle access Of, A (g(X), -) weakly predicts (X, I’)-

one can efficiently find all
parity functions y that are 3. GL“™ outputs a list

even weakly correlated with f co.ntalnlng X — contradicts that
g2 is a OWF.

Which “Goldreich-Levin Algorithm”?

Rackoff’s Algorithm The Original [Goldreich-Levin]
 Uses derandomization e Uses Fourier analysis
(querying all subset sums
of =~ log(n) random e Well-known in learning theory

vectors in [7)
This Work:

m» (ueries are not

statistically uniform Original algorithm is basically

already 1-out-of-2 covert.

Small modification gives
(k — 1)-out-of-k covertness.

(Locally) Covert Goldreich-Levin Algorithms

Previous Lemma: [Canetti-Karchmer]
(following [Rackoff])

Assuming LPN is subexponentially hard,
there is a computationally covert

algorithm for low-degree Goldreich-
Levin learning

= pseudo-uniform
queries

all log(n)-variable y s.t. | f(y) | >
(except with 0 probability)

Our Main Theorem
(following [Goldreich-Levin]):

For any constant k, there is a

perfectly (k — 1)-out-of-k covert
algorithm for Goldreich-Levin learning

uniform
queries

uniform
queries

allyst.|f(n| 27
(except with 0 probability)

Fourier Analysis Essentials

Fory € [, let f(}/) € [—1,1] denote the correlation of f
with the parity function (y, -). Call f(y)? the weight of y.

Fact: 2 f(;/)2 = 1. Not many heavy parities.
S Not many heavy prefixes.

m and 1-of-2 covertly oo

E Lemma: With queries to f, one can efficiently'estimate

" weight(p) := Z f(p o 5)* for any “prefix” p € F,

seFi* \

concatenation

will prove this later !

Weighing Parity Prefixes —
Goldreich-Levin

Basic Idea: Maintain a list of candidate prefixes of heavy parities ¥
(those with f(y)? > 1), starting with 1-bit prefixes {0,1}.

1. Weigh each prefix in the list and throw away light prefixes (those
with weight < 7)

= At most 1/7 prefixes.

2. Replace remaining prefixes pby peOand p o 1

= At most 2/1 prefixes

3. Repeat until prefixes are n-bit strings.

How To Weigh-

With queries to f, one can efficientlyYestimate

weight(p) = Z f"(p o 5)* for any “prefix” p € I]j;.

—k
sel;

More Generally:

With queries to f, one can efficiently'estimate

weight(A) := 2 f()/)2 for any affine subspace A C [
yEA

Affine Spaces

How To Weigh Affine Spaces

Lemma:
For any affine subspace A CF!, A=y*+YV,

one can efficiently estimate weight(A) := Z]?(}/)2
1-of-2 covertly yEA

X; and X, individually

Formula: uniformly random

D fpP= E [fx) - flry) -y + 1)

x+x,eV+
}/EA 1 2

Expectation can be directly empirically estimated

(k — 1)-of-k Covertness

Previous formula naturally generalizes:
if A = y* + Vs an affine subspace of [F%, then

Y ff= B [fa)efe) i + ex)]

X+ x,EVE
}/EA 1 k

vetet P~ s mtom

e To get (k — 1)-of-k covert GL, apply same strateqy,
using k-weight instead of 2-weight

Goldreich-Levin with k-weights
(k even WLOG)

Strategy: Maintain a list of candidate [-bit prefixes of heavy parities
y (those with f(y)? > 1), starting with {0,1}.

1.

Weigh each prefix in the list and throw away light prefixes (those
with k-weight < 7¥/?)

ki2

= At most 1/7"“ prefixes because 2-weight > k-weight

Replace remaining prefixes pby pe O and p o 1

= At most 2/7%? prefixes 7 can be 1/ poly(n), so
O(k)

running time n

Repeat until prefixes are n-bit strings.

Futgre Work?

Q3: Covert algorithms in T VR 5
other learning models? - 1S there a gap:
J TCO for natural classes? L
Active
Q4: Is t-out-of-k covert T \
learning easier for ACO
t<k—1thant=k—1? A polynomially
- Fourier
// concentrated
— v Locally
T Q1 Covert
poly-size - poly-size
DNF (or CNF) parity DT
A A
poly-size / _
Covert DT parity e
(assuming LPN)
[Canetti-Karchmer] :
Passive

log(n)-junta

Thanks & Happy Birthday!
-‘S, | . - "".‘ é‘ »

ia.cr/2023/392

