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The Learning Model, Part I
By “  is learnable”, we mean there exists a learning algorithm that is:ℋ

Efficient:  
Given accuracy parameter  and confidence parameter , learner runs in 
time .

α δ
𝗉𝗈𝗅𝗒(n, 1/α, log(1/δ))

(Weakly) Agnostic:  
If target function  is -close to some ,f ϵ h⋆ ∈ ℋ
the learner outputs a hypothesis  that is -close to ,h (O(ϵ) + α) f
with all but  probability.δ

Distribution-Specific: “closeness” is measured wrt the uniform 
distribution

Improper: Learner can output any circuit, not necessarily in .ℋ
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Learner gets oracle access to .f
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Adversarial Learning

By now a burgeoning field.  Includes, but not limited to:

1. Covert Learning: [Canetti-Karchmer ’21, IKOS ’19]  
curious eavesdropper tries to piggyback on the 
queries of an active learner.

2. Verifiable Learning: [Goldwasser-Rothblum-Shafer-Yehudayoff ’20] 
untrusted prover claims that a hypothesis  
approximates  near-optimally (compared to some 
class of functions).

h
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Why Study Covert Learning?

Scenario 1: Delegating Scientific Discovery 

[Canetti-Karchmer21]
Plan: Learn a function   for which: 
random examples are cheap / useless 
queries are relatively useful but expensive,

f

   For example, an organism’s genome  phenome map→

Problem: Want to delegate to specialists, but …
what if they sell resulting data to your competitors?

Solution: use covert learning  their data has no resale 
value

⟹
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Scenario 2: Verifiable Learning

Same Plan: Delegate the query-learning of a function ; 
assume cheap but useless random examples for .

f
f

New Problem [Goldwasser-Rothblum-Shafer-Yehudayoff ’21]: How to ensure we 
receive a near-optimal circuit?

One Approach:  Tell learner what queries to make (following a covert 
learning algorithm).  Hide “test queries” (using random examples)

➡ If test queries are correct, most others must be as well.

➡ If learning algorithm is also “robust” then a few incorrect 
query answers can’t ruin the output. 
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Scenario 3: Model Extraction 
[Canetti-Karchmer 21]

Plan: Sell AI as a service (e.g. chat GPT)

• Generally trained on random data (more scalable)

Problem: Can competitor use queries to clone the model?

Defense?? Block users who make weird query patterns

Can’t really work against a covert learner 😢
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Crypto Version: 
Let  be a OWF.  Then

 is hard-core for 
.

g
⟨x, r⟩ (mod 2)
(g(x), r)

Proof assuming Learning Version:

1.  is a parity 
function.
⟨x, ⋅ ⟩ (mod 2)

2. If not hard-core, then an adversary 
 weakly predicts . 𝒜(g(x), ⋅ ) ⟨x, r⟩

3.  outputs a list 
containing   contradicts that 

 is a OWF.

𝖦𝖫𝒜(g(x),⋅)

x ⟹
g

f

Learning Version: 

Given oracle access to , 
one can efficiently find all 
parity functions  that are 
even weakly correlated with 
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Which “Goldreich-Levin Algorithm”?

The Original [Goldreich-Levin]

• Uses Fourier analysis

• Well-known in learning theory

This Work:

Original algorithm is basically 
already 1-out-of-2 covert.

Small modification gives 
-out-of-  covertness.(k − 1) k

Rackoff’s Algorithm

• Uses derandomization 
(querying all subset sums  
of  random 
vectors in )

≈ log(n)
𝔽n

2

➡ Queries are not 
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Basic Idea: Maintain a list of candidate prefixes of heavy parities  
(those with ), starting with -bit prefixes .

γ
̂f(γ)2 ≥ ϵ 1 {0,1}

1. Weigh each prefix in the list and throw away light prefixes (those 
with weight )


➡ At most  prefixes.

< ϵ

1/ϵ

2. Replace remaining prefixes  by  and 


➡ At most  prefixes

p p ∘ 0 p ∘ 1

2/ϵ

3. Repeat until prefixes are -bit strings.n
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Goldreich-Levin with -weights 

(  even WLOG)

k
k

Strategy: Maintain a list of candidate -bit prefixes of heavy parities 
 (those with ), starting with .

l
γ ̂f(γ)2 ≥ ϵ {0,1}

1. Weigh each prefix in the list and throw away light prefixes (those 
with -weight )k < ϵk/2

➡ At most  prefixes because -weight > -weight1/ϵk/2 2 k

2. Replace remaining prefixes  by  and p p ∘ 0 p ∘ 1

➡ At most  prefixes2/ϵk/2

3. Repeat until prefixes are -bit strings.n

running time is exponential in k
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Active

Locally 
CovertQ1

Passive

Future Work?

log(n)-junta

parity
poly-size 

DT

poly-size 
DNF (or CNF)

polynomially

Fourier 

concentrated

AC0

TC0

…

poly-size 
parity DT

Covert 
(assuming LPN) 
[Canetti-Karchmer]

Q3: Covert algorithms in 
other learning models?

Q4: Is -out-of-  covert 
learning easier for 

 than ? 

t k

t < k − 1 t = k − 1

Q2: is there a gap? 
for natural classes?
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