
Locally Covert Learning 

Justin Holmgren 
NTT Research

Ruta Jawale

UIUC



Learning Boolean Functions 

f



Learning Boolean Functions 

1. Polynomial-time learner gets access to a function 
f : {0,1}n → {0,1}

f



Learning Boolean Functions 

1. Polynomial-time learner gets access to a function 
f : {0,1}n → {0,1}

2. Learner’s goal is to output a function  that agrees with  
on most inputs.

h f

f



The Learning Model, Part I



The Learning Model, Part I
By “  is learnable”, we mean there exists a learning algorithm that is:ℋ



The Learning Model, Part I
By “  is learnable”, we mean there exists a learning algorithm that is:ℋ

Efficient:  
Given accuracy parameter  and confidence parameter , learner runs in 
time .

α δ
𝗉𝗈𝗅𝗒(n, 1/α, log(1/δ))



The Learning Model, Part I
By “  is learnable”, we mean there exists a learning algorithm that is:ℋ

Efficient:  
Given accuracy parameter  and confidence parameter , learner runs in 
time .

α δ
𝗉𝗈𝗅𝗒(n, 1/α, log(1/δ))

(Weakly) Agnostic:  
If target function  is -close to some ,f ϵ h⋆ ∈ ℋ



The Learning Model, Part I
By “  is learnable”, we mean there exists a learning algorithm that is:ℋ

Efficient:  
Given accuracy parameter  and confidence parameter , learner runs in 
time .

α δ
𝗉𝗈𝗅𝗒(n, 1/α, log(1/δ))

(Weakly) Agnostic:  
If target function  is -close to some ,f ϵ h⋆ ∈ ℋ
the learner outputs a hypothesis  that is -close to ,h (O(ϵ) + α) f



The Learning Model, Part I
By “  is learnable”, we mean there exists a learning algorithm that is:ℋ

Efficient:  
Given accuracy parameter  and confidence parameter , learner runs in 
time .

α δ
𝗉𝗈𝗅𝗒(n, 1/α, log(1/δ))

(Weakly) Agnostic:  
If target function  is -close to some ,f ϵ h⋆ ∈ ℋ
the learner outputs a hypothesis  that is -close to ,h (O(ϵ) + α) f
with all but  probability.δ



The Learning Model, Part I
By “  is learnable”, we mean there exists a learning algorithm that is:ℋ

Efficient:  
Given accuracy parameter  and confidence parameter , learner runs in 
time .

α δ
𝗉𝗈𝗅𝗒(n, 1/α, log(1/δ))

(Weakly) Agnostic:  
If target function  is -close to some ,f ϵ h⋆ ∈ ℋ
the learner outputs a hypothesis  that is -close to ,h (O(ϵ) + α) f
with all but  probability.δ

Distribution-Specific: “closeness” is measured wrt the uniform 
distribution



The Learning Model, Part I
By “  is learnable”, we mean there exists a learning algorithm that is:ℋ

Efficient:  
Given accuracy parameter  and confidence parameter , learner runs in 
time .

α δ
𝗉𝗈𝗅𝗒(n, 1/α, log(1/δ))

(Weakly) Agnostic:  
If target function  is -close to some ,f ϵ h⋆ ∈ ℋ
the learner outputs a hypothesis  that is -close to ,h (O(ϵ) + α) f
with all but  probability.δ

Distribution-Specific: “closeness” is measured wrt the uniform 
distribution

Improper: Learner can output any circuit, not necessarily in .ℋ



The Learning Model, Part II

Types of Function Access

Passive Learning: 

Learner gets pairs  
for uniformly random 

(x, f(x))
x

f



The Learning Model, Part II

Types of Function Access

Passive Learning: 

Learner gets pairs  
for uniformly random 

(x, f(x))
x

f

Active Learning: 

Learner gets oracle access to .f

f



Learnable actively

log(n)-junta

paritypoly-size 
DT

polynomially

Fourier 

concentrated

Passive vs. Active Learning



Learnable actively

log(n)-junta

paritypoly-size 
DT

polynomially

Fourier 

concentrated

Passive vs. Active Learning

poly-size 
DNF (or CNF)



Learnable actively

log(n)-junta

paritypoly-size 
DT

polynomially

Fourier 

concentrated

Learnable passively

not very much stuff…

Passive vs. Active Learning

poly-size 
DNF (or CNF)



quasi-poly time  
learnable passively 

[Linial-Mansour-Nisan] 

Learnable actively

log(n)-junta

paritypoly-size 
DT

polynomially

Fourier 

concentrated

Learnable passively

not very much stuff…

Passive vs. Active Learning

AC0

poly-size 
DNF (or CNF)



quasi-poly time  
learnable passively 

[Linial-Mansour-Nisan] 

Learnable actively

log(n)-junta

paritypoly-size 
DT

polynomially

Fourier 

concentrated

TC0

…
Learnable passively

not very much stuff…

Passive vs. Active Learning

AC0

poly-size 
DNF (or CNF)



where’s the adversary?



Adversarial Learning



Adversarial Learning

By now a burgeoning field.  Includes, but not limited to:



Adversarial Learning

By now a burgeoning field.  Includes, but not limited to:

1. Covert Learning: [Canetti-Karchmer ’21, IKOS ’19]  
curious eavesdropper tries to piggyback on the 
queries of an active learner.



Adversarial Learning

By now a burgeoning field.  Includes, but not limited to:

1. Covert Learning: [Canetti-Karchmer ’21, IKOS ’19]  
curious eavesdropper tries to piggyback on the 
queries of an active learner.

2. Verifiable Learning: [Goldwasser-Rothblum-Shafer-Yehudayoff ’20] 
untrusted prover claims that a hypothesis  
approximates  near-optimally (compared to some 
class of functions).

h
f



Covert Learning 
[Canetti-Karchmer ’21, IKOS ’19]

f
active learner



Covert Learning 
[Canetti-Karchmer ’21, IKOS ’19]

f
active learner

observer



Covert Learning 
[Canetti-Karchmer ’21, IKOS ’19]

f
active learner

observer

f≈
passive simulator



Covert Learning 
[Canetti-Karchmer ’21, IKOS ’19]

f
active learner

observer

f≈
passive simulator

usually i.i.d. uniform or 
pseudo-uniform queries



Covert Learning 
[Canetti-Karchmer ’21, IKOS ’19]

f
active learner

observer

f≈
passive simulator

usually i.i.d. uniform or 
pseudo-uniform queries



(1-of-2) Locally Covert Learning 
[IKOS19]

ff



(1-of-2) Locally Covert Learning 
[IKOS19]

ff



Why Study Covert Learning?

Scenario 1: Delegating Scientific Discovery 

[Canetti-Karchmer21]



Why Study Covert Learning?

Scenario 1: Delegating Scientific Discovery 

[Canetti-Karchmer21]
Plan: Learn a function   for which: 
random examples are cheap / useless 
queries are relatively useful but expensive,

f



Why Study Covert Learning?

Scenario 1: Delegating Scientific Discovery 

[Canetti-Karchmer21]
Plan: Learn a function   for which: 
random examples are cheap / useless 
queries are relatively useful but expensive,

f

   For example, an organism’s genome  phenome map→



Why Study Covert Learning?

Scenario 1: Delegating Scientific Discovery 

[Canetti-Karchmer21]
Plan: Learn a function   for which: 
random examples are cheap / useless 
queries are relatively useful but expensive,

f

   For example, an organism’s genome  phenome map→

Problem: Want to delegate to specialists, but …



Why Study Covert Learning?

Scenario 1: Delegating Scientific Discovery 

[Canetti-Karchmer21]
Plan: Learn a function   for which: 
random examples are cheap / useless 
queries are relatively useful but expensive,

f

   For example, an organism’s genome  phenome map→

Problem: Want to delegate to specialists, but …
what if they sell resulting data to your competitors?



Why Study Covert Learning?

Scenario 1: Delegating Scientific Discovery 

[Canetti-Karchmer21]
Plan: Learn a function   for which: 
random examples are cheap / useless 
queries are relatively useful but expensive,

f

   For example, an organism’s genome  phenome map→

Problem: Want to delegate to specialists, but …
what if they sell resulting data to your competitors?

Solution: use covert learning  their data has no resale 
value

⟹



Scenario 2: Verifiable Learning



Scenario 2: Verifiable Learning

Same Plan: Delegate the query-learning of a function ; 
assume cheap but useless random examples for .

f
f



Scenario 2: Verifiable Learning

Same Plan: Delegate the query-learning of a function ; 
assume cheap but useless random examples for .

f
f

New Problem [Goldwasser-Rothblum-Shafer-Yehudayoff ’21]: How to ensure we 
receive a near-optimal circuit?



Scenario 2: Verifiable Learning

Same Plan: Delegate the query-learning of a function ; 
assume cheap but useless random examples for .

f
f

New Problem [Goldwasser-Rothblum-Shafer-Yehudayoff ’21]: How to ensure we 
receive a near-optimal circuit?

One Approach:  Tell learner what queries to make (following a covert 
learning algorithm).  Hide “test queries” (using random examples)



Scenario 2: Verifiable Learning

Same Plan: Delegate the query-learning of a function ; 
assume cheap but useless random examples for .

f
f

New Problem [Goldwasser-Rothblum-Shafer-Yehudayoff ’21]: How to ensure we 
receive a near-optimal circuit?

One Approach:  Tell learner what queries to make (following a covert 
learning algorithm).  Hide “test queries” (using random examples)

➡ If test queries are correct, most others must be as well.



Scenario 2: Verifiable Learning

Same Plan: Delegate the query-learning of a function ; 
assume cheap but useless random examples for .

f
f

New Problem [Goldwasser-Rothblum-Shafer-Yehudayoff ’21]: How to ensure we 
receive a near-optimal circuit?

One Approach:  Tell learner what queries to make (following a covert 
learning algorithm).  Hide “test queries” (using random examples)

➡ If test queries are correct, most others must be as well.

➡ If learning algorithm is also “robust” then a few incorrect 
query answers can’t ruin the output. 



Scenario 3: Model Extraction 
[Canetti-Karchmer 21]



Scenario 3: Model Extraction 
[Canetti-Karchmer 21]

Plan: Sell AI as a service (e.g. chat GPT)



Scenario 3: Model Extraction 
[Canetti-Karchmer 21]

Plan: Sell AI as a service (e.g. chat GPT)

• Generally trained on random data (more scalable)



Scenario 3: Model Extraction 
[Canetti-Karchmer 21]

Plan: Sell AI as a service (e.g. chat GPT)

• Generally trained on random data (more scalable)

Problem: Can competitor use queries to clone the model?



Scenario 3: Model Extraction 
[Canetti-Karchmer 21]

Plan: Sell AI as a service (e.g. chat GPT)

• Generally trained on random data (more scalable)

Problem: Can competitor use queries to clone the model?

Defense?? Block users who make weird query patterns



Scenario 3: Model Extraction 
[Canetti-Karchmer 21]

Plan: Sell AI as a service (e.g. chat GPT)

• Generally trained on random data (more scalable)

Problem: Can competitor use queries to clone the model?

Defense?? Block users who make weird query patterns

Can’t really work against a covert learner 😢



Active

Passive

Passive  Covert  Active≤ ≤

log(n)-junta

parity
poly-size 

DT

poly-size 
DNF (or CNF)

polynomially

Fourier 

concentrated

AC0

TC0

…



Active

Covert 
(assuming LPN) 
[Canetti-Karchmer] Passive

Passive  Covert  Active≤ ≤

log(n)-junta

parity
poly-size 

DT

poly-size 
DNF (or CNF)

polynomially

Fourier 

concentrated

AC0

TC0

…



Active

Locally Covert 
[this work]

Covert 
(assuming LPN) 
[Canetti-Karchmer] Passive

Passive  Covert  Active≤ ≤

log(n)-junta

parity
poly-size 

DT

poly-size 
DNF (or CNF)

polynomially

Fourier 

concentrated

AC0

TC0

…



Active

Locally Covert 
[this work]

Covert 
(assuming LPN) 
[Canetti-Karchmer] Passive

Passive  Covert  Active≤ ≤

log(n)-junta

parity
poly-size 

DT

poly-size 
DNF (or CNF)

polynomially

Fourier 

concentrated

AC0

TC0

…

poly-size 
parity DT



Active

Locally Covert 
[this work]

Covert 
(assuming LPN) 
[Canetti-Karchmer]

[IKOS19]

Passive

Passive  Covert  Active≤ ≤

log(n)-junta

parity
poly-size 

DT

poly-size 
DNF (or CNF)

polynomially

Fourier 

concentrated

AC0

TC0

…

poly-size 
parity DT



The Goldreich-Levin Theorem

f

Learning Version: 

Given oracle access to , 
one can efficiently find all 
parity functions  that are 
even weakly correlated with 

f

γ
f



The Goldreich-Levin Theorem
Crypto Version: 
Let  be a OWF.  Then

 is hard-core for 
.

g
⟨x, r⟩ (mod 2)
(g(x), r)f

Learning Version: 

Given oracle access to , 
one can efficiently find all 
parity functions  that are 
even weakly correlated with 

f

γ
f



The Goldreich-Levin Theorem
Crypto Version: 
Let  be a OWF.  Then

 is hard-core for 
.

g
⟨x, r⟩ (mod 2)
(g(x), r)

Proof assuming Learning Version:

f

Learning Version: 

Given oracle access to , 
one can efficiently find all 
parity functions  that are 
even weakly correlated with 

f

γ
f



The Goldreich-Levin Theorem
Crypto Version: 
Let  be a OWF.  Then

 is hard-core for 
.

g
⟨x, r⟩ (mod 2)
(g(x), r)

Proof assuming Learning Version:

1.  is a parity 
function.
⟨x, ⋅ ⟩ (mod 2)

f

Learning Version: 

Given oracle access to , 
one can efficiently find all 
parity functions  that are 
even weakly correlated with 

f

γ
f



The Goldreich-Levin Theorem
Crypto Version: 
Let  be a OWF.  Then

 is hard-core for 
.

g
⟨x, r⟩ (mod 2)
(g(x), r)

Proof assuming Learning Version:

1.  is a parity 
function.
⟨x, ⋅ ⟩ (mod 2)

2. If not hard-core, then an adversary 
 weakly predicts . 𝒜(g(x), ⋅ ) ⟨x, r⟩

f

Learning Version: 

Given oracle access to , 
one can efficiently find all 
parity functions  that are 
even weakly correlated with 

f

γ
f



The Goldreich-Levin Theorem
Crypto Version: 
Let  be a OWF.  Then

 is hard-core for 
.

g
⟨x, r⟩ (mod 2)
(g(x), r)

Proof assuming Learning Version:

1.  is a parity 
function.
⟨x, ⋅ ⟩ (mod 2)

2. If not hard-core, then an adversary 
 weakly predicts . 𝒜(g(x), ⋅ ) ⟨x, r⟩

3.  outputs a list 
containing   contradicts that 

 is a OWF.

𝖦𝖫𝒜(g(x),⋅)

x ⟹
g

f

Learning Version: 

Given oracle access to , 
one can efficiently find all 
parity functions  that are 
even weakly correlated with 

f

γ
f



Which “Goldreich-Levin Algorithm”?



Which “Goldreich-Levin Algorithm”?

Rackoff’s Algorithm



Which “Goldreich-Levin Algorithm”?

Rackoff’s Algorithm

• Uses derandomization 
(querying all subset sums  
of  random 
vectors in )

≈ log(n)
𝔽n

2



Which “Goldreich-Levin Algorithm”?

Rackoff’s Algorithm

• Uses derandomization 
(querying all subset sums  
of  random 
vectors in )

≈ log(n)
𝔽n

2

➡ Queries are not 
statistically uniform



Which “Goldreich-Levin Algorithm”?

The Original [Goldreich-Levin]Rackoff’s Algorithm

• Uses derandomization 
(querying all subset sums  
of  random 
vectors in )

≈ log(n)
𝔽n

2

➡ Queries are not 
statistically uniform



Which “Goldreich-Levin Algorithm”?

The Original [Goldreich-Levin]

• Uses Fourier analysis

Rackoff’s Algorithm

• Uses derandomization 
(querying all subset sums  
of  random 
vectors in )

≈ log(n)
𝔽n

2

➡ Queries are not 
statistically uniform



Which “Goldreich-Levin Algorithm”?

The Original [Goldreich-Levin]

• Uses Fourier analysis

• Well-known in learning theory

Rackoff’s Algorithm

• Uses derandomization 
(querying all subset sums  
of  random 
vectors in )

≈ log(n)
𝔽n

2

➡ Queries are not 
statistically uniform



Which “Goldreich-Levin Algorithm”?

The Original [Goldreich-Levin]

• Uses Fourier analysis

• Well-known in learning theory

This Work:

Original algorithm is basically 
already 1-out-of-2 covert.

Rackoff’s Algorithm

• Uses derandomization 
(querying all subset sums  
of  random 
vectors in )

≈ log(n)
𝔽n

2

➡ Queries are not 
statistically uniform



Which “Goldreich-Levin Algorithm”?

The Original [Goldreich-Levin]

• Uses Fourier analysis

• Well-known in learning theory

This Work:

Original algorithm is basically 
already 1-out-of-2 covert.

Small modification gives 
-out-of-  covertness.(k − 1) k

Rackoff’s Algorithm

• Uses derandomization 
(querying all subset sums  
of  random 
vectors in )

≈ log(n)
𝔽n

2

➡ Queries are not 
statistically uniform



(Locally) Covert Goldreich-Levin Algorithms



(Locally) Covert Goldreich-Levin Algorithms
Previous Lemma: [Canetti-Karchmer] 
(following [Rackoff])

Assuming LPN is subexponentially hard, 
there is a computationally covert 
algorithm for low-degree Goldreich-
Levin learning



(Locally) Covert Goldreich-Levin Algorithms
Previous Lemma: [Canetti-Karchmer] 
(following [Rackoff])

Assuming LPN is subexponentially hard, 
there is a computationally covert 
algorithm for low-degree Goldreich-
Levin learning

all log(n)-variable  s.t.  
(except with  probability)

γ | ̂f(γ) | ≥ ϵ
δ

pseudo-uniform 
queries

f



(Locally) Covert Goldreich-Levin Algorithms

For any constant , there is a 
perfectly -out-of-  covert 
algorithm for Goldreich-Levin learning

k
(k − 1) k

Our Main Theorem 
(following [Goldreich-Levin]):

Previous Lemma: [Canetti-Karchmer] 
(following [Rackoff])

Assuming LPN is subexponentially hard, 
there is a computationally covert 
algorithm for low-degree Goldreich-
Levin learning

all log(n)-variable  s.t.  
(except with  probability)

γ | ̂f(γ) | ≥ ϵ
δ

pseudo-uniform 
queries

f



(Locally) Covert Goldreich-Levin Algorithms

For any constant , there is a 
perfectly -out-of-  covert 
algorithm for Goldreich-Levin learning

k
(k − 1) k

f

all  s.t.  
(except with  probability)

γ | ̂f(γ) | ≥ ϵ
δ

uniform 
queries

uniform 
queries

f

Our Main Theorem 
(following [Goldreich-Levin]):

Previous Lemma: [Canetti-Karchmer] 
(following [Rackoff])

Assuming LPN is subexponentially hard, 
there is a computationally covert 
algorithm for low-degree Goldreich-
Levin learning

all log(n)-variable  s.t.  
(except with  probability)

γ | ̂f(γ) | ≥ ϵ
δ

pseudo-uniform 
queries

f



Fourier Analysis Essentials



Fourier Analysis Essentials
For , let  denote the correlation of  
with the parity function .  Call  the weight of .

γ ∈ 𝔽n
2

̂f(γ) ∈ [−1,1] f
⟨γ, ⋅ ⟩ ̂f(γ)2 γ



Fourier Analysis Essentials
For , let  denote the correlation of  
with the parity function .  Call  the weight of .

γ ∈ 𝔽n
2

̂f(γ) ∈ [−1,1] f
⟨γ, ⋅ ⟩ ̂f(γ)2 γ

Fact: .  ∑
γ∈𝔽n

2

̂f(γ)2 = 1



Fourier Analysis Essentials
For , let  denote the correlation of  
with the parity function .  Call  the weight of .

γ ∈ 𝔽n
2

̂f(γ) ∈ [−1,1] f
⟨γ, ⋅ ⟩ ̂f(γ)2 γ

Fact: .  ∑
γ∈𝔽n

2

̂f(γ)2 = 1 Not many heavy parities.



Fourier Analysis Essentials
For , let  denote the correlation of  
with the parity function .  Call  the weight of .

γ ∈ 𝔽n
2

̂f(γ) ∈ [−1,1] f
⟨γ, ⋅ ⟩ ̂f(γ)2 γ

Fact: .  ∑
γ∈𝔽n

2

̂f(γ)2 = 1

Lemma: With queries to , one can efficiently estimate 

 for any “prefix” ,

f
𝗐𝖾𝗂𝗀𝗁𝗍(p) := ∑

s∈𝔽n−k
2

̂f(p ∘ s)2 p ∈ 𝔽k
2

Not many heavy parities.



Fourier Analysis Essentials
For , let  denote the correlation of  
with the parity function .  Call  the weight of .

γ ∈ 𝔽n
2

̂f(γ) ∈ [−1,1] f
⟨γ, ⋅ ⟩ ̂f(γ)2 γ

Fact: .  ∑
γ∈𝔽n

2

̂f(γ)2 = 1

Lemma: With queries to , one can efficiently estimate 

 for any “prefix” ,

f
𝗐𝖾𝗂𝗀𝗁𝗍(p) := ∑

s∈𝔽n−k
2

̂f(p ∘ s)2 p ∈ 𝔽k
2

concatenation

Not many heavy parities.



Fourier Analysis Essentials
For , let  denote the correlation of  
with the parity function .  Call  the weight of .

γ ∈ 𝔽n
2

̂f(γ) ∈ [−1,1] f
⟨γ, ⋅ ⟩ ̂f(γ)2 γ

Fact: .  ∑
γ∈𝔽n

2

̂f(γ)2 = 1

Lemma: With queries to , one can efficiently estimate 

 for any “prefix” ,

f
𝗐𝖾𝗂𝗀𝗁𝗍(p) := ∑

s∈𝔽n−k
2

̂f(p ∘ s)2 p ∈ 𝔽k
2

concatenation

Not many heavy parities.

Not many heavy prefixes.



Fourier Analysis Essentials
For , let  denote the correlation of  
with the parity function .  Call  the weight of .

γ ∈ 𝔽n
2

̂f(γ) ∈ [−1,1] f
⟨γ, ⋅ ⟩ ̂f(γ)2 γ

Fact: .  ∑
γ∈𝔽n

2

̂f(γ)2 = 1

Lemma: With queries to , one can efficiently estimate 

 for any “prefix” ,

f
𝗐𝖾𝗂𝗀𝗁𝗍(p) := ∑

s∈𝔽n−k
2

̂f(p ∘ s)2 p ∈ 𝔽k
2

concatenation

Not many heavy parities.

Not many heavy prefixes.
and 1-of-2 covertly



Fourier Analysis Essentials
For , let  denote the correlation of  
with the parity function .  Call  the weight of .

γ ∈ 𝔽n
2

̂f(γ) ∈ [−1,1] f
⟨γ, ⋅ ⟩ ̂f(γ)2 γ

Fact: .  ∑
γ∈𝔽n

2

̂f(γ)2 = 1

Lemma: With queries to , one can efficiently estimate 

 for any “prefix” ,

f
𝗐𝖾𝗂𝗀𝗁𝗍(p) := ∑

s∈𝔽n−k
2

̂f(p ∘ s)2 p ∈ 𝔽k
2

will prove this laterconcatenation

Not many heavy parities.

Not many heavy prefixes.
and 1-of-2 covertly



Weighing Parity Prefixes  
Goldreich-Levin

⟹



Weighing Parity Prefixes  
Goldreich-Levin

⟹

Basic Idea: Maintain a list of candidate prefixes of heavy parities  
(those with ), starting with -bit prefixes .

γ
̂f(γ)2 ≥ ϵ 1 {0,1}



Weighing Parity Prefixes  
Goldreich-Levin

⟹

Basic Idea: Maintain a list of candidate prefixes of heavy parities  
(those with ), starting with -bit prefixes .

γ
̂f(γ)2 ≥ ϵ 1 {0,1}

1. Weigh each prefix in the list and throw away light prefixes (those 
with weight )


➡ At most  prefixes.

< ϵ

1/ϵ



Weighing Parity Prefixes  
Goldreich-Levin

⟹

Basic Idea: Maintain a list of candidate prefixes of heavy parities  
(those with ), starting with -bit prefixes .

γ
̂f(γ)2 ≥ ϵ 1 {0,1}

1. Weigh each prefix in the list and throw away light prefixes (those 
with weight )


➡ At most  prefixes.

< ϵ

1/ϵ

2. Replace remaining prefixes  by  and 


➡ At most  prefixes

p p ∘ 0 p ∘ 1

2/ϵ



Weighing Parity Prefixes  
Goldreich-Levin

⟹

Basic Idea: Maintain a list of candidate prefixes of heavy parities  
(those with ), starting with -bit prefixes .

γ
̂f(γ)2 ≥ ϵ 1 {0,1}

1. Weigh each prefix in the list and throw away light prefixes (those 
with weight )


➡ At most  prefixes.

< ϵ

1/ϵ

2. Replace remaining prefixes  by  and 


➡ At most  prefixes

p p ∘ 0 p ∘ 1

2/ϵ

3. Repeat until prefixes are -bit strings.n



How To Weigh Prefixes



How To Weigh Prefixes
Lemma: 
With queries to , one can efficiently estimate 

 for any “prefix” .

f
𝗐𝖾𝗂𝗀𝗁𝗍(p) := ∑

s∈𝔽n−k
2

̂f(p ∘ s)2 p ∈ 𝔽k
2



How To Weigh Prefixes
Lemma: 
With queries to , one can efficiently estimate 

 for any “prefix” .

f
𝗐𝖾𝗂𝗀𝗁𝗍(p) := ∑

s∈𝔽n−k
2

̂f(p ∘ s)2 p ∈ 𝔽k
2

More Generally: 
With queries to , one can efficiently estimate 

 for any affine subspace 

f
𝗐𝖾𝗂𝗀𝗁𝗍(A) := ∑

γ∈A

̂f(γ)2 A ⊆ 𝔽n
2



How To Weigh Prefixes
Lemma: 
With queries to , one can efficiently estimate 

 for any “prefix” .

f
𝗐𝖾𝗂𝗀𝗁𝗍(p) := ∑

s∈𝔽n−k
2

̂f(p ∘ s)2 p ∈ 𝔽k
2

More Generally: 
With queries to , one can efficiently estimate 

 for any affine subspace 

f
𝗐𝖾𝗂𝗀𝗁𝗍(A) := ∑

γ∈A

̂f(γ)2 A ⊆ 𝔽n
2

Affine Spaces



How To Weigh Prefixes
Lemma: 
With queries to , one can efficiently estimate 

 for any “prefix” .

f
𝗐𝖾𝗂𝗀𝗁𝗍(p) := ∑

s∈𝔽n−k
2

̂f(p ∘ s)2 p ∈ 𝔽k
2

More Generally: 
With queries to , one can efficiently estimate 

 for any affine subspace 

f
𝗐𝖾𝗂𝗀𝗁𝗍(A) := ∑

γ∈A

̂f(γ)2 A ⊆ 𝔽n
2

Affine Spaces

and 1-of-2 covertly

and 1-of-2 covertly



How To Weigh Affine Spaces
Lemma: 
For any affine subspace ,    , 

one can efficiently estimate 

A ⊆ 𝔽n
2 A = γ⋆ + V

𝗐𝖾𝗂𝗀𝗁𝗍(A) := ∑
γ∈A

̂f(γ)2



How To Weigh Affine Spaces
Lemma: 
For any affine subspace ,    , 

one can efficiently estimate 

A ⊆ 𝔽n
2 A = γ⋆ + V

𝗐𝖾𝗂𝗀𝗁𝗍(A) := ∑
γ∈A

̂f(γ)2

Formula: 

∑
γ∈A

̂f(γ)2 = 𝔼
x1+x2∈V⊥ [ f(x1) ⋅ f(x2) ⋅ γ⋆(x1 + x2)]



How To Weigh Affine Spaces
Lemma: 
For any affine subspace ,    , 

one can efficiently estimate 

A ⊆ 𝔽n
2 A = γ⋆ + V

𝗐𝖾𝗂𝗀𝗁𝗍(A) := ∑
γ∈A

̂f(γ)2

Formula: 

∑
γ∈A

̂f(γ)2 = 𝔼
x1+x2∈V⊥ [ f(x1) ⋅ f(x2) ⋅ γ⋆(x1 + x2)]

Expectation can be directly empirically estimated



How To Weigh Affine Spaces
Lemma: 
For any affine subspace ,    , 

one can efficiently estimate 

A ⊆ 𝔽n
2 A = γ⋆ + V

𝗐𝖾𝗂𝗀𝗁𝗍(A) := ∑
γ∈A

̂f(γ)2

Formula: 

∑
γ∈A

̂f(γ)2 = 𝔼
x1+x2∈V⊥ [ f(x1) ⋅ f(x2) ⋅ γ⋆(x1 + x2)]

 and  individually 
uniformly random

x1 x2

Expectation can be directly empirically estimated



How To Weigh Affine Spaces
Lemma: 
For any affine subspace ,    , 

one can efficiently estimate 

A ⊆ 𝔽n
2 A = γ⋆ + V

𝗐𝖾𝗂𝗀𝗁𝗍(A) := ∑
γ∈A

̂f(γ)2

Formula: 

∑
γ∈A

̂f(γ)2 = 𝔼
x1+x2∈V⊥ [ f(x1) ⋅ f(x2) ⋅ γ⋆(x1 + x2)]

 and  individually 
uniformly random

x1 x2

1-of-2 covertly

Expectation can be directly empirically estimated



-of-  Covertness(k − 1) k



-of-  Covertness(k − 1) k
Previous formula naturally generalizes: 
If  is an affine subspace of , then 
 

 

 

A = γ⋆ + V 𝔽n
2

∑
γ∈A

̂f(γ)k = 𝔼
x1+⋯+xk∈V⊥ [ f(x1)⋯f(xk) ⋅ γ⋆(x1 + ⋯xk)]



-of-  Covertness(k − 1) k
Previous formula naturally generalizes: 
If  is an affine subspace of , then 
 

 

 

A = γ⋆ + V 𝔽n
2

∑
γ∈A

̂f(γ)k = 𝔼
x1+⋯+xk∈V⊥ [ f(x1)⋯f(xk) ⋅ γ⋆(x1 + ⋯xk)]

“ -weight of ”k A



-of-  Covertness(k − 1) k
Previous formula naturally generalizes: 
If  is an affine subspace of , then 
 

 

 

A = γ⋆ + V 𝔽n
2

∑
γ∈A

̂f(γ)k = 𝔼
x1+⋯+xk∈V⊥ [ f(x1)⋯f(xk) ⋅ γ⋆(x1 + ⋯xk)]

• To get -of-  covert GL, apply same strategy, 
using -weight instead of -weight

(k − 1) k
k 2

“ -weight of ”k A



-of-  Covertness(k − 1) k
Previous formula naturally generalizes: 
If  is an affine subspace of , then 
 

 

 

A = γ⋆ + V 𝔽n
2

∑
γ∈A

̂f(γ)k = 𝔼
x1+⋯+xk∈V⊥ [ f(x1)⋯f(xk) ⋅ γ⋆(x1 + ⋯xk)]

• To get -of-  covert GL, apply same strategy, 
using -weight instead of -weight

(k − 1) k
k 2

“ -weight of ”k A -wise uniform(k − 1)



Goldreich-Levin with -weights 

(  even WLOG)

k
k



Goldreich-Levin with -weights 

(  even WLOG)

k
k

Strategy: Maintain a list of candidate -bit prefixes of heavy parities 
 (those with ), starting with .

l
γ ̂f(γ)2 ≥ ϵ {0,1}



Goldreich-Levin with -weights 

(  even WLOG)

k
k

Strategy: Maintain a list of candidate -bit prefixes of heavy parities 
 (those with ), starting with .

l
γ ̂f(γ)2 ≥ ϵ {0,1}

1. Weigh each prefix in the list and throw away light prefixes (those 
with -weight )k < ϵk/2



Goldreich-Levin with -weights 

(  even WLOG)

k
k

Strategy: Maintain a list of candidate -bit prefixes of heavy parities 
 (those with ), starting with .

l
γ ̂f(γ)2 ≥ ϵ {0,1}

1. Weigh each prefix in the list and throw away light prefixes (those 
with -weight )k < ϵk/2

➡ At most  prefixes because -weight > -weight1/ϵk/2 2 k



Goldreich-Levin with -weights 

(  even WLOG)

k
k

Strategy: Maintain a list of candidate -bit prefixes of heavy parities 
 (those with ), starting with .

l
γ ̂f(γ)2 ≥ ϵ {0,1}

1. Weigh each prefix in the list and throw away light prefixes (those 
with -weight )k < ϵk/2

➡ At most  prefixes because -weight > -weight1/ϵk/2 2 k

2. Replace remaining prefixes  by  and p p ∘ 0 p ∘ 1



Goldreich-Levin with -weights 

(  even WLOG)

k
k

Strategy: Maintain a list of candidate -bit prefixes of heavy parities 
 (those with ), starting with .

l
γ ̂f(γ)2 ≥ ϵ {0,1}

1. Weigh each prefix in the list and throw away light prefixes (those 
with -weight )k < ϵk/2

➡ At most  prefixes because -weight > -weight1/ϵk/2 2 k

2. Replace remaining prefixes  by  and p p ∘ 0 p ∘ 1

➡ At most  prefixes2/ϵk/2



Goldreich-Levin with -weights 

(  even WLOG)

k
k

Strategy: Maintain a list of candidate -bit prefixes of heavy parities 
 (those with ), starting with .

l
γ ̂f(γ)2 ≥ ϵ {0,1}

1. Weigh each prefix in the list and throw away light prefixes (those 
with -weight )k < ϵk/2

➡ At most  prefixes because -weight > -weight1/ϵk/2 2 k

2. Replace remaining prefixes  by  and p p ∘ 0 p ∘ 1

➡ At most  prefixes2/ϵk/2

3. Repeat until prefixes are -bit strings.n



Goldreich-Levin with -weights 

(  even WLOG)

k
k

Strategy: Maintain a list of candidate -bit prefixes of heavy parities 
 (those with ), starting with .

l
γ ̂f(γ)2 ≥ ϵ {0,1}

1. Weigh each prefix in the list and throw away light prefixes (those 
with -weight )k < ϵk/2

➡ At most  prefixes because -weight > -weight1/ϵk/2 2 k

2. Replace remaining prefixes  by  and p p ∘ 0 p ∘ 1

➡ At most  prefixes2/ϵk/2

3. Repeat until prefixes are -bit strings.n

running time is exponential in k



Active

Locally 
Covert

Passive

Future Work?

log(n)-junta

parity
poly-size 

DT

poly-size 
DNF (or CNF)

polynomially

Fourier 

concentrated

AC0

TC0

…

poly-size 
parity DT

Covert 
(assuming LPN) 
[Canetti-Karchmer]



Active

Locally 
CovertQ1

Passive

Future Work?

log(n)-junta

parity
poly-size 

DT

poly-size 
DNF (or CNF)

polynomially

Fourier 

concentrated

AC0

TC0

…

poly-size 
parity DT

Covert 
(assuming LPN) 
[Canetti-Karchmer]



Active

Locally 
CovertQ1

Passive

Future Work?

log(n)-junta

parity
poly-size 

DT

poly-size 
DNF (or CNF)

polynomially

Fourier 

concentrated

AC0

TC0

…

poly-size 
parity DT

Covert 
(assuming LPN) 
[Canetti-Karchmer]

Q2: is there a gap? 
for natural classes?



Active

Locally 
CovertQ1

Passive

Future Work?

log(n)-junta

parity
poly-size 

DT

poly-size 
DNF (or CNF)

polynomially

Fourier 

concentrated

AC0

TC0

…

poly-size 
parity DT

Covert 
(assuming LPN) 
[Canetti-Karchmer]

Q3: Covert algorithms in 
other learning models? Q2: is there a gap? 

for natural classes?



Active

Locally 
CovertQ1

Passive

Future Work?

log(n)-junta

parity
poly-size 

DT

poly-size 
DNF (or CNF)

polynomially

Fourier 

concentrated

AC0

TC0

…

poly-size 
parity DT

Covert 
(assuming LPN) 
[Canetti-Karchmer]

Q3: Covert algorithms in 
other learning models?

Q4: Is -out-of-  covert 
learning easier for 

 than ? 

t k

t < k − 1 t = k − 1

Q2: is there a gap? 
for natural classes?



Thanks & Happy Birthday!

ia.cr/2023/392



Thanks & Happy Birthday!

ia.cr/2023/392


