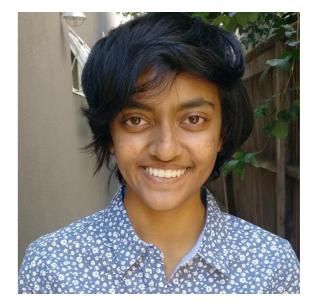
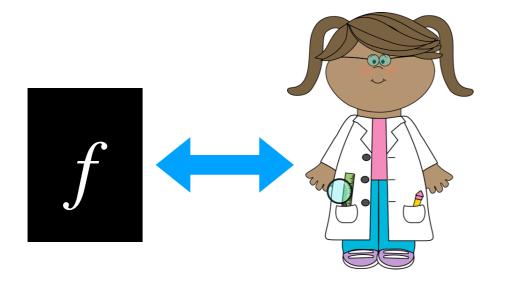
Locally Covert Learning

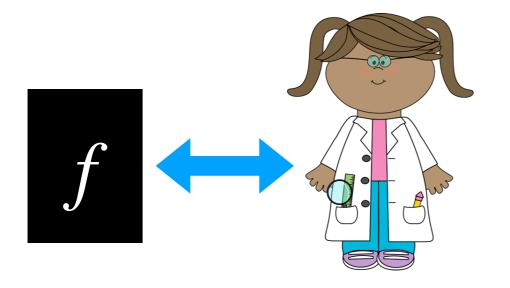
Justin Holmgren NTT Research Ruta Jawale UIUC



Learning Boolean Functions

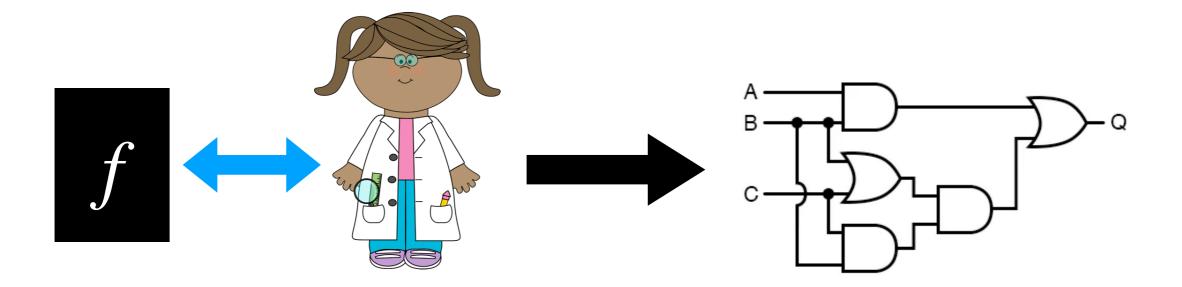


Learning Boolean Functions



1. Polynomial-time learner gets access to a function $f: \{0,1\}^n \rightarrow \{0,1\}$

Learning Boolean Functions



- 1. Polynomial-time learner gets access to a function $f: \{0,1\}^n \rightarrow \{0,1\}$
- 2. Learner's goal is to output a function h that agrees with f on most inputs.

By " \mathscr{H} is learnable", we mean there exists a learning algorithm that is:

By " \mathscr{H} is learnable", we mean there exists a learning algorithm that is:

Efficient:

Given accuracy parameter α and confidence parameter δ , learner runs in time poly $(n, 1/\alpha, \log(1/\delta))$.

By " \mathscr{H} is learnable", we mean there exists a learning algorithm that is:

Efficient:

Given accuracy parameter α and confidence parameter δ , learner runs in time poly(n, $1/\alpha$, $\log(1/\delta)$).

(Weakly) Agnostic:

If target function f is ϵ -close to some $h^* \in \mathcal{H}$,

By " \mathscr{H} is learnable", we mean there exists a learning algorithm that is:

Efficient:

Given accuracy parameter α and confidence parameter δ , learner runs in time poly $(n, 1/\alpha, \log(1/\delta))$.

(Weakly) Agnostic:

If target function f is ϵ -close to some $h^* \in \mathcal{H}$, the learner outputs a hypothesis h that is $(O(\epsilon) + \alpha)$ -close to f,

By " \mathscr{H} is learnable", we mean there exists a learning algorithm that is:

Efficient:

Given accuracy parameter α and confidence parameter δ , learner runs in time $poly(n, 1/\alpha, log(1/\delta))$.

(Weakly) Agnostic:

If target function f is ϵ -close to some $h^* \in \mathcal{H}$, the learner outputs a hypothesis h that is $(O(\epsilon) + \alpha)$ -close to f, with all but δ probability.

By " \mathscr{H} is learnable", we mean there exists a learning algorithm that is:

Efficient:

Given accuracy parameter α and confidence parameter δ , learner runs in time poly $(n, 1/\alpha, \log(1/\delta))$.

(Weakly) Agnostic:

If target function f is ϵ -close to some $h^* \in \mathcal{H}$, the learner outputs a hypothesis h that is $(O(\epsilon) + \alpha)$ -close to f, with all but δ probability.

Distribution-Specific: "closeness" is measured wrt the uniform distribution

By " \mathscr{H} is learnable", we mean there exists a learning algorithm that is:

Efficient:

Given accuracy parameter α and confidence parameter δ , learner runs in time poly $(n, 1/\alpha, \log(1/\delta))$.

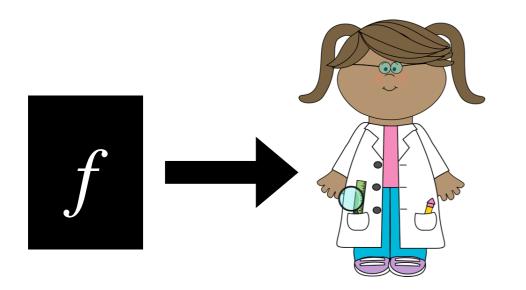
(Weakly) Agnostic:

If target function f is ϵ -close to some $h^* \in \mathcal{H}$, the learner outputs a hypothesis h that is $(O(\epsilon) + \alpha)$ -close to f, with all but δ probability.

Distribution-Specific: "closeness" is measured wrt the uniform distribution

Improper: Learner can output any circuit, not necessarily in \mathcal{H} .

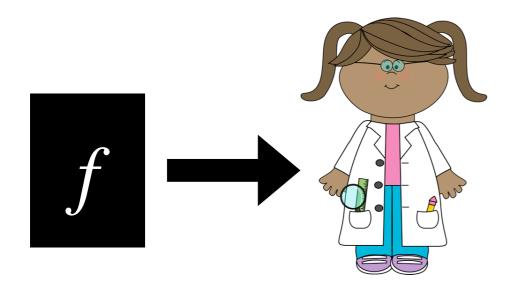
The Learning Model, Part II Types of Function Access

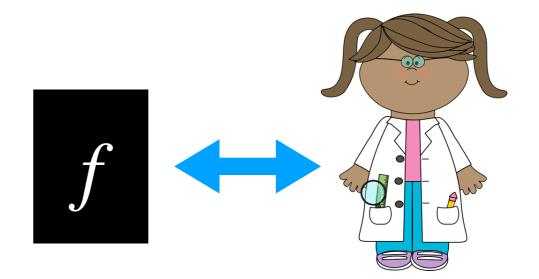


Passive Learning:

Learner gets pairs (x, f(x))for uniformly random x

The Learning Model, Part II Types of Function Access



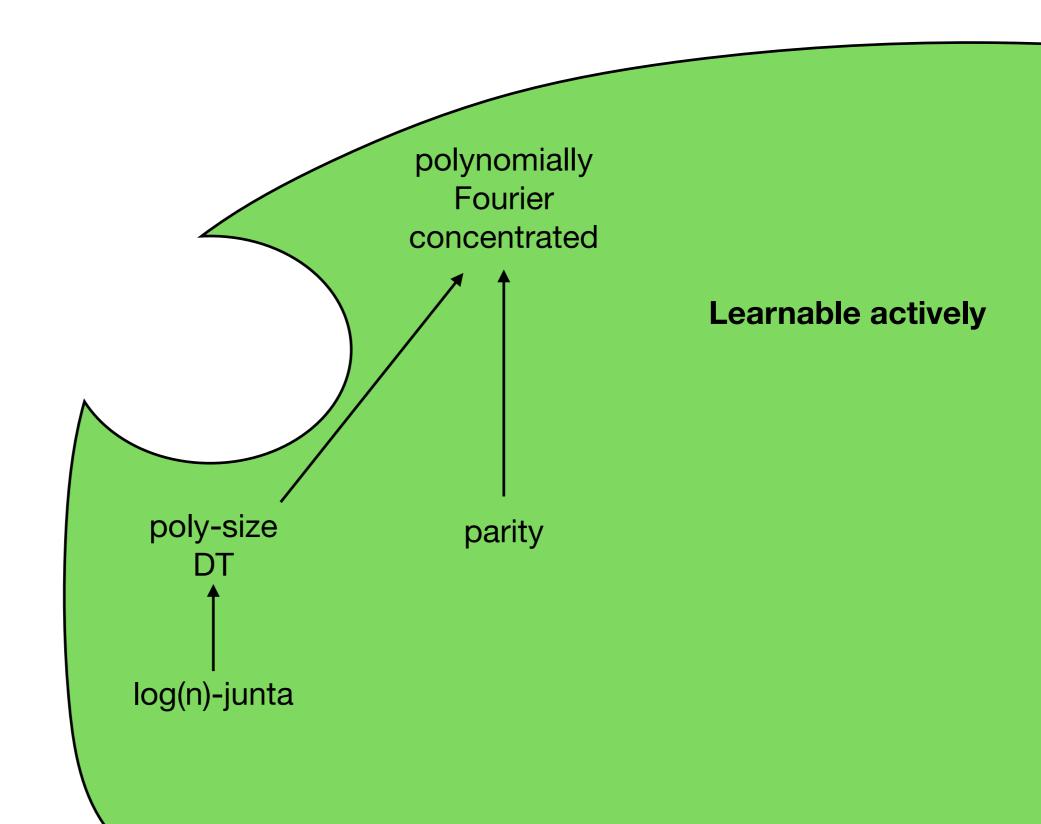


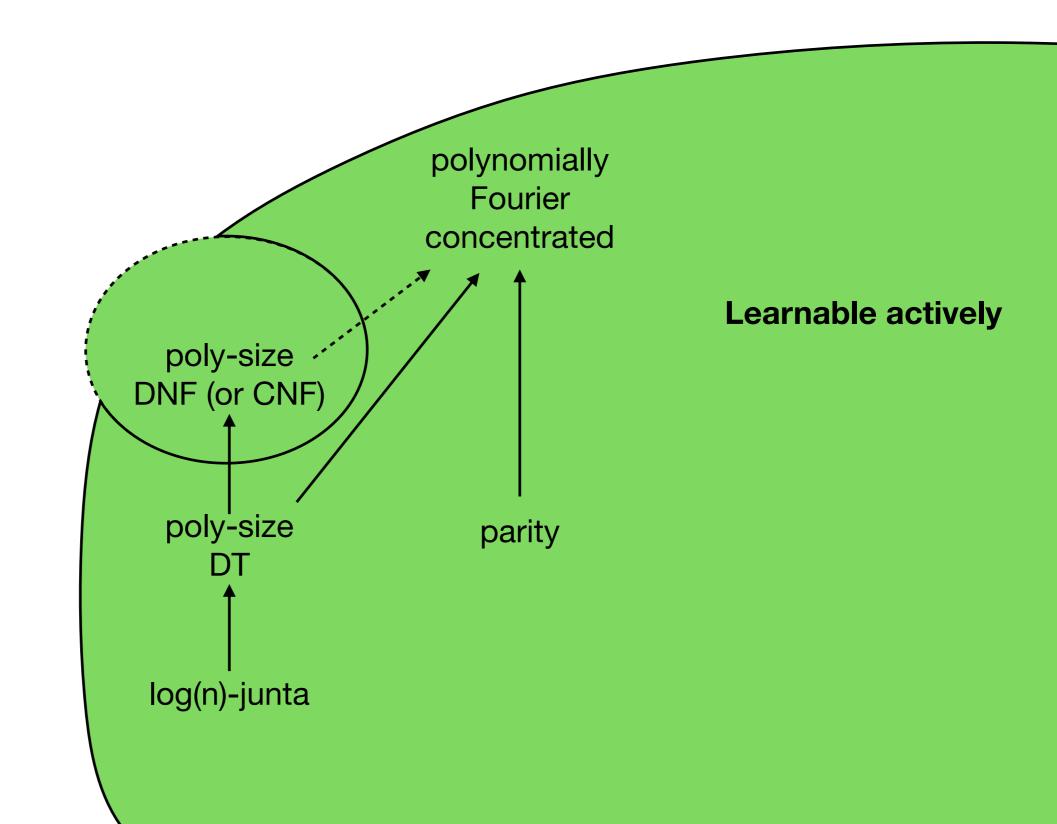
Passive Learning:

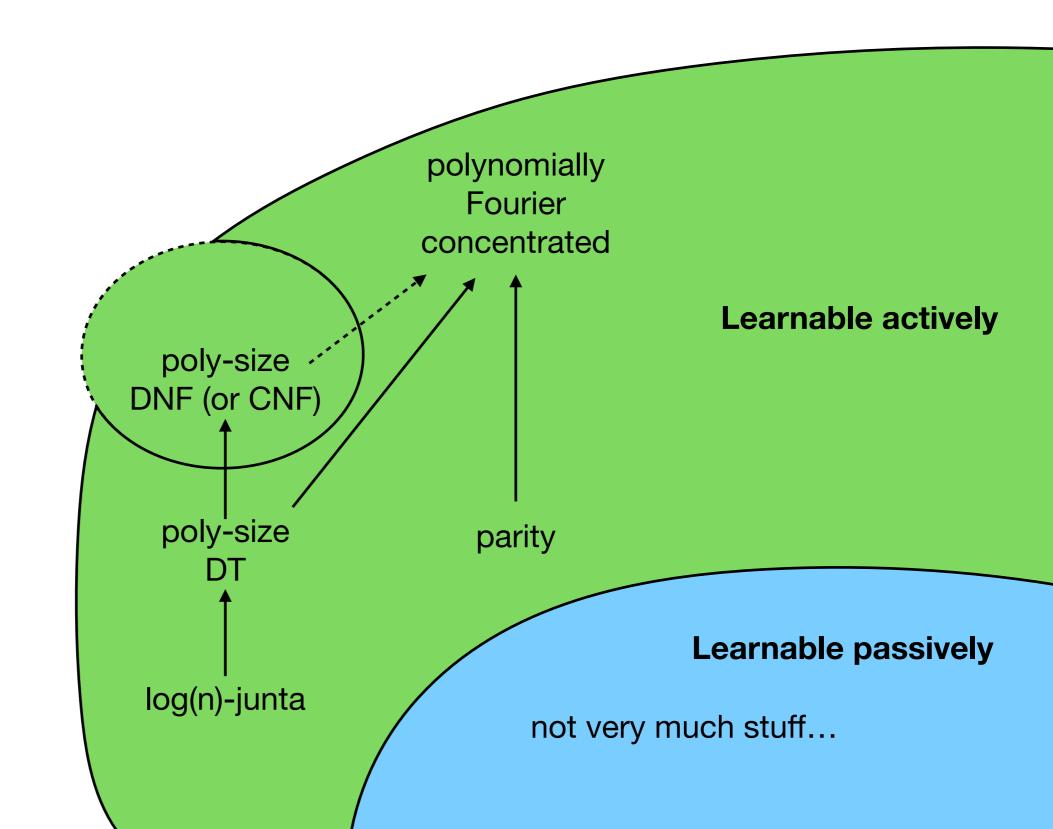
Active Learning:

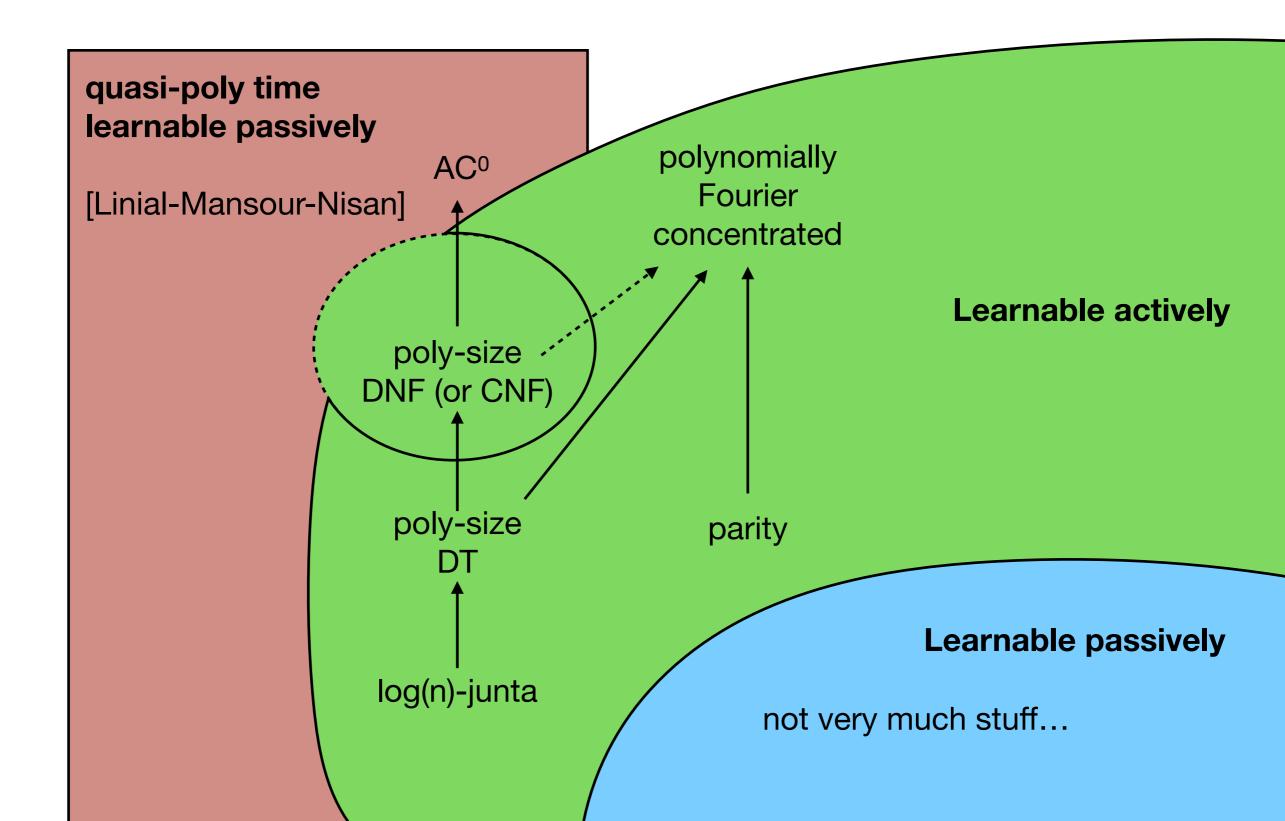
Learner gets pairs (x, f(x))for uniformly random x

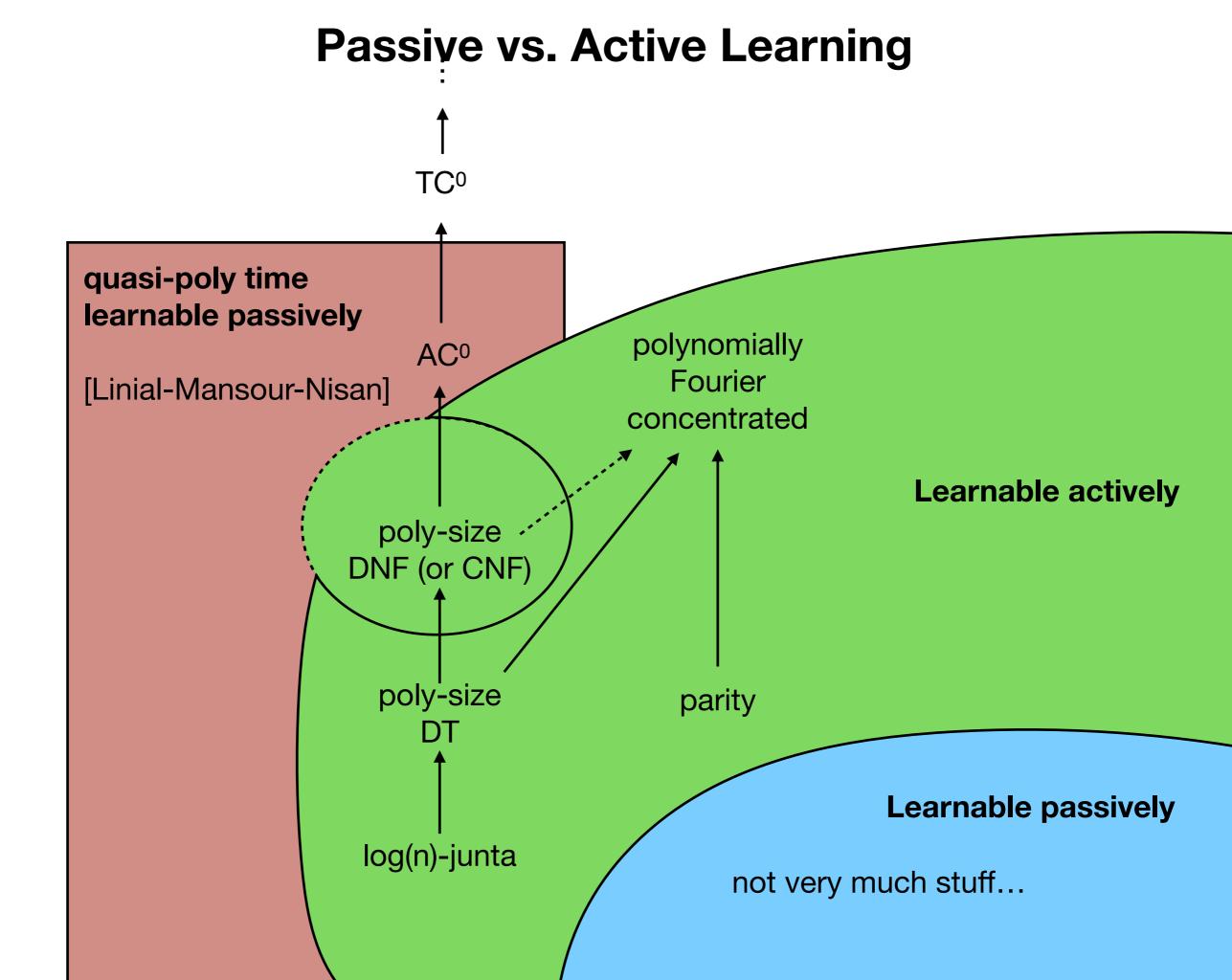
Learner gets oracle access to f.











where's the adversary?

By now a burgeoning field. Includes, but not limited to:

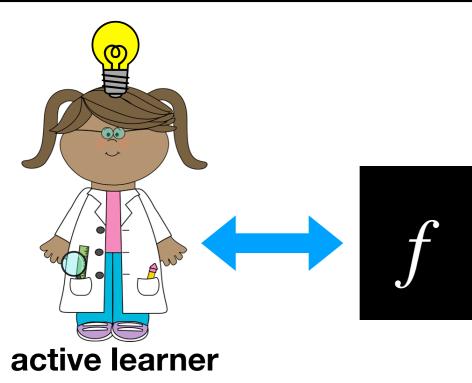
By now a burgeoning field. Includes, but not limited to:

1. Covert Learning: [Canetti-Karchmer '21, IKOS '19] curious eavesdropper tries to piggyback on the queries of an active learner.

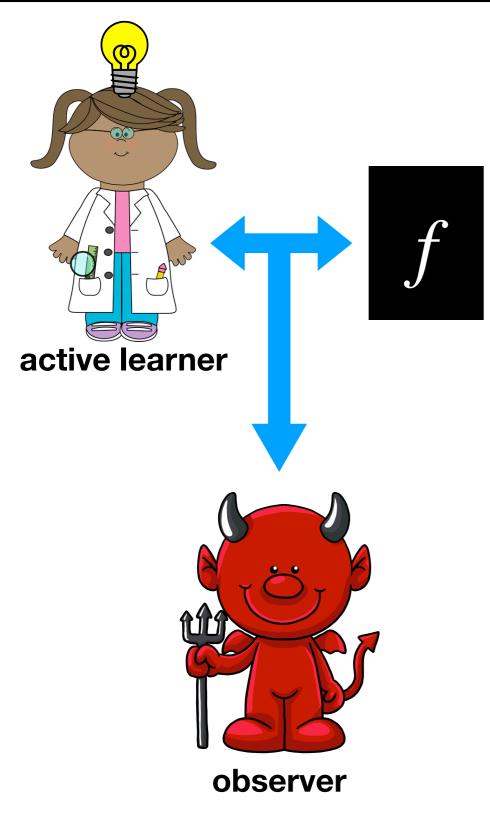
By now a burgeoning field. Includes, but not limited to:

- **1. Covert Learning**: [Canetti-Karchmer '21, IKOS '19] curious eavesdropper tries to piggyback on the queries of an active learner.
- 2. Verifiable Learning: [Goldwasser-Rothblum-Shafer-Yehudayoff '20] untrusted prover claims that a hypothesis *h* approximates *f* near-optimally (compared to some class of functions).

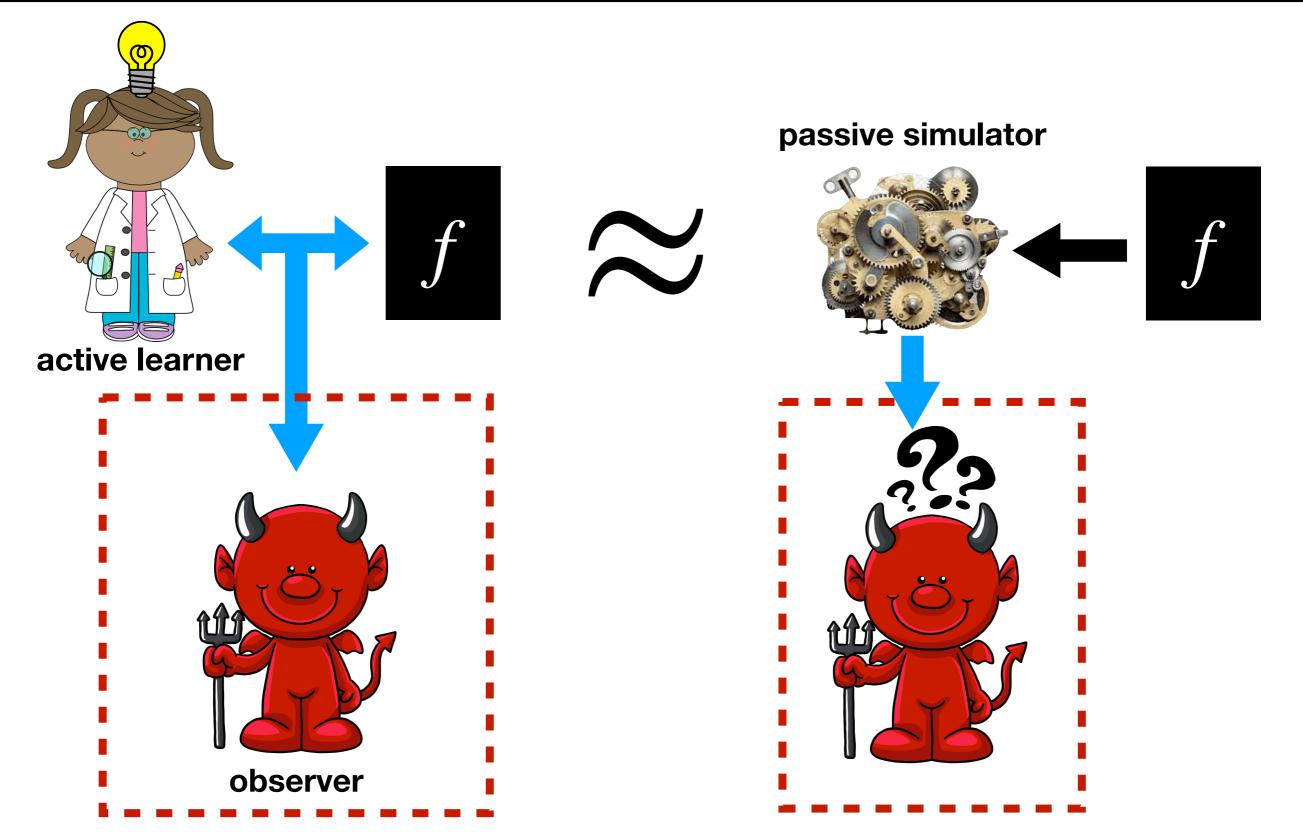
Covert Learning [Canetti-Karchmer '21, IKOS '19]

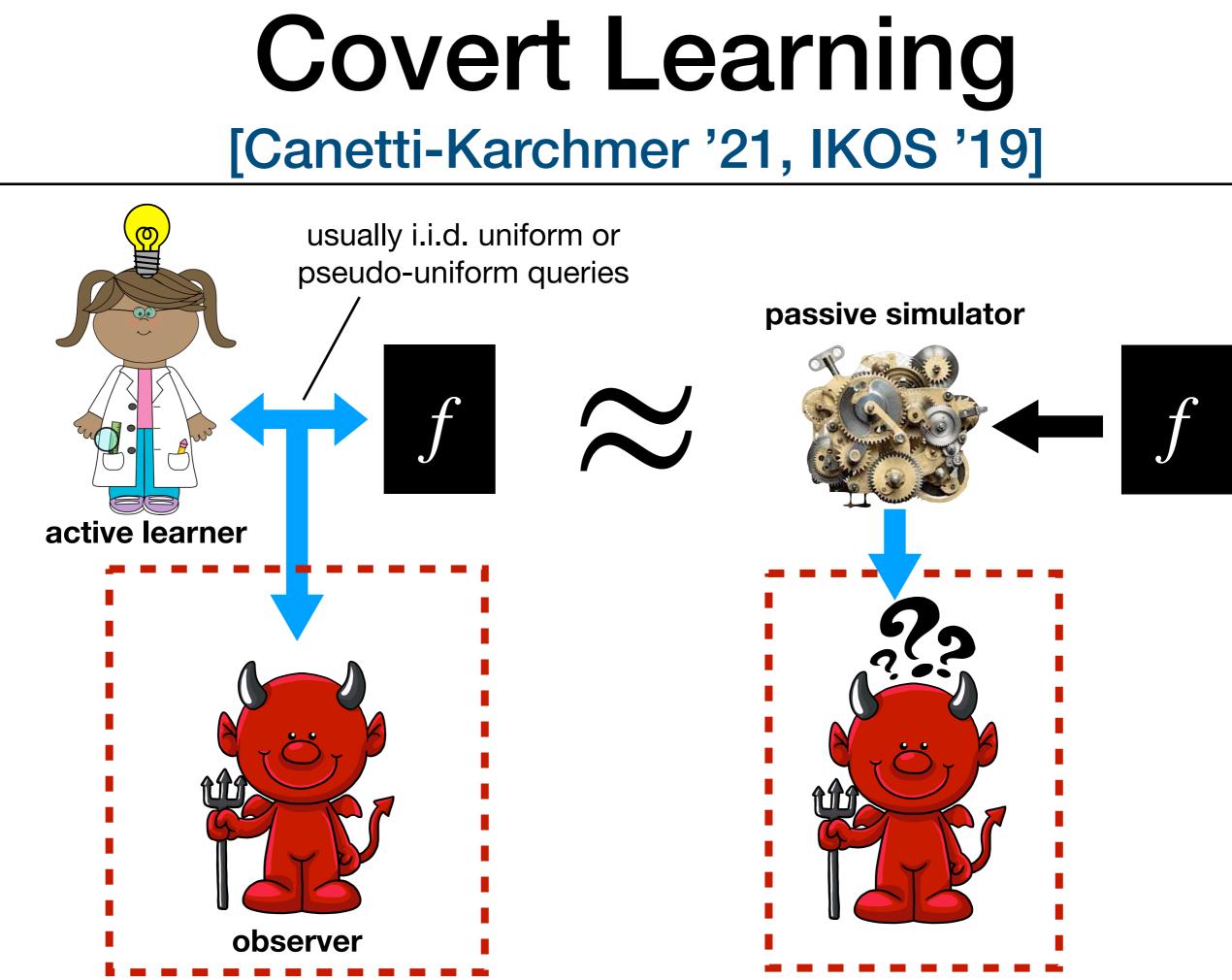


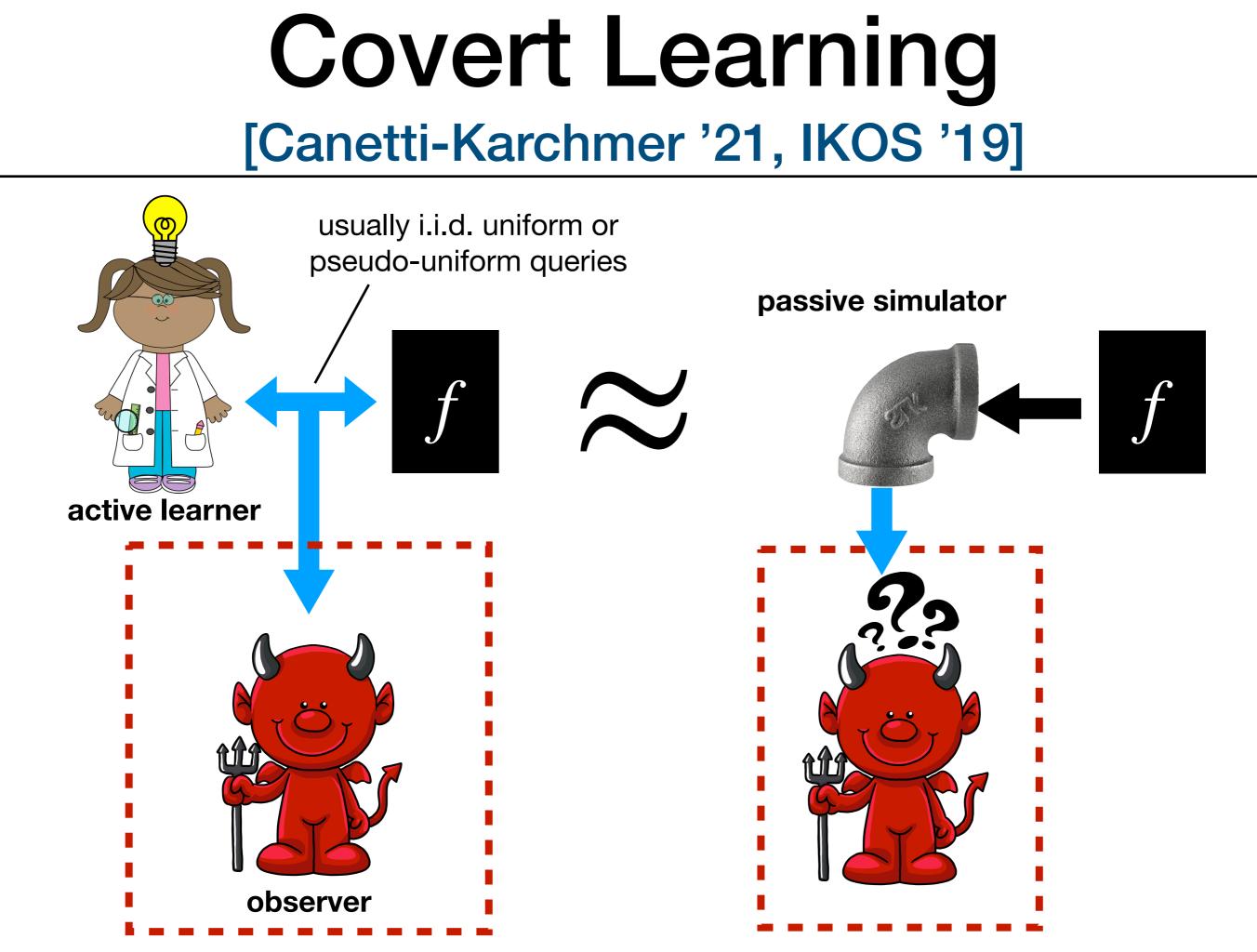
Covert Learning [Canetti-Karchmer '21, IKOS '19]



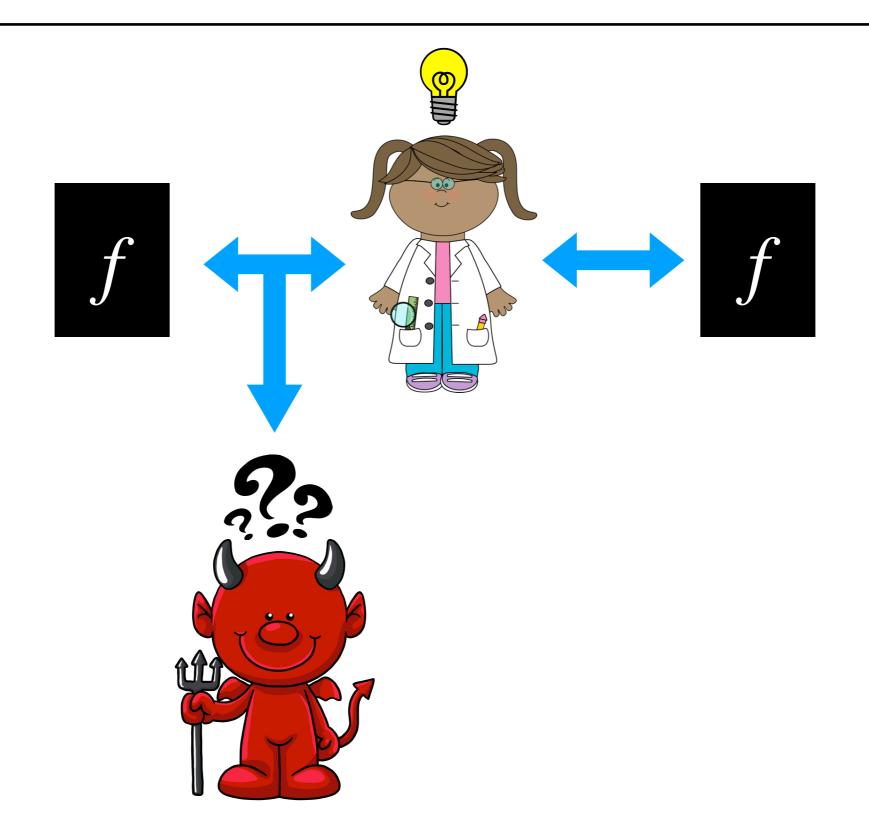
Covert Learning [Canetti-Karchmer '21, IKOS '19]



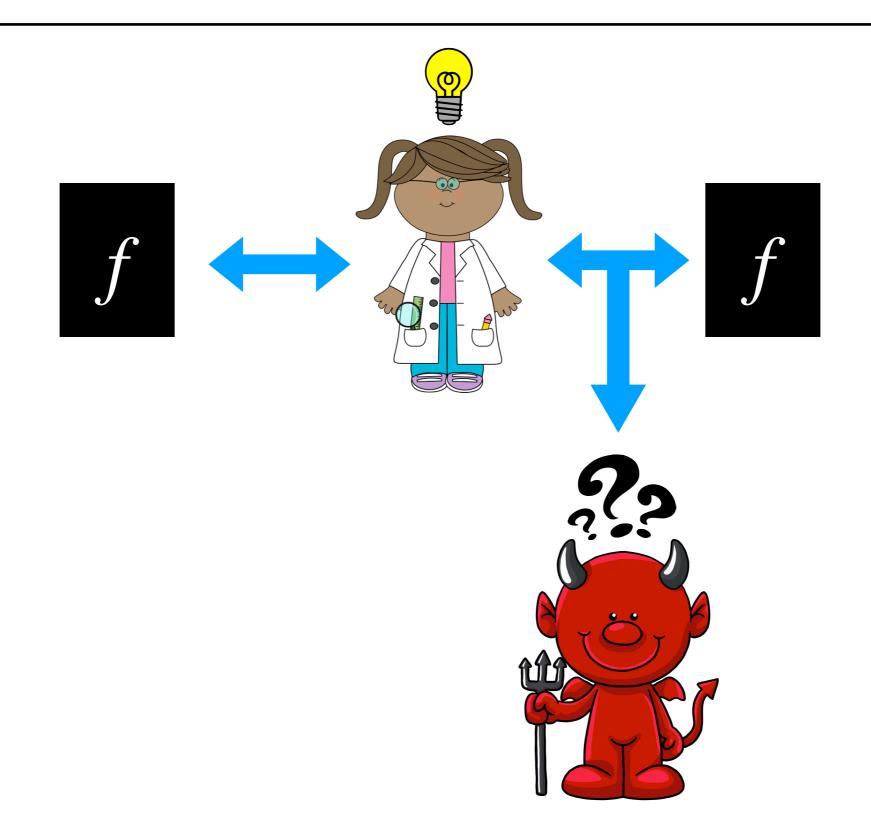




(1-of-2) Locally Covert Learning [IKOS19]



(1-of-2) Locally Covert Learning [IKOS19]



Plan: Learn a function f for which: random examples are cheap / useless queries are relatively useful but expensive,

Plan: Learn a function f for which: random examples are cheap / useless queries are relatively useful but expensive,

For example, an organism's genome \rightarrow phenome map

Plan: Learn a function f for which: random examples are cheap / useless queries are relatively useful but expensive,

For example, an organism's genome \rightarrow phenome map

Problem: Want to delegate to specialists, but ...

Plan: Learn a function f for which: random examples are cheap / useless queries are relatively useful but expensive,

For example, an organism's genome \rightarrow phenome map

Problem: Want to delegate to specialists, but ... what if they sell resulting data to your competitors?

Why Study Covert Learning? Scenario 1: Delegating Scientific Discovery [Canetti-Karchmer21]

Plan: Learn a function f for which: random examples are cheap / useless queries are relatively useful but expensive,

For example, an organism's genome \rightarrow phenome map

Problem: Want to delegate to specialists, but ... what if they sell resulting data to your competitors?

Solution: use covert learning \implies their data has no resale value

Same Plan: Delegate the query-learning of a function f; assume cheap but useless random examples for f.

Same Plan: Delegate the query-learning of a function f; assume cheap but useless random examples for f.

New Problem [Goldwasser-Rothblum-Shafer-Yehudayoff '21]: How to ensure we receive a near-optimal circuit?

Same Plan: Delegate the query-learning of a function f; assume cheap but useless random examples for f.

New Problem [Goldwasser-Rothblum-Shafer-Yehudayoff '21]: How to ensure we receive a near-optimal circuit?

One Approach: Tell learner what queries to make (following a covert learning algorithm). Hide "test queries" (using random examples)

Same Plan: Delegate the query-learning of a function f; assume cheap but useless random examples for f.

New Problem [Goldwasser-Rothblum-Shafer-Yehudayoff '21]: How to ensure we receive a near-optimal circuit?

One Approach: Tell learner what queries to make (following a covert learning algorithm). Hide "test queries" (using random examples)

If test queries are correct, most others must be as well.

Same Plan: Delegate the query-learning of a function f; assume cheap but useless random examples for f.

New Problem [Goldwasser-Rothblum-Shafer-Yehudayoff '21]: How to ensure we receive a near-optimal circuit?

One Approach: Tell learner what queries to make (following a covert learning algorithm). Hide "test queries" (using random examples)

If test queries are correct, most others must be as well.

If learning algorithm is also "robust" then a few incorrect query answers can't ruin the output.

Plan: Sell AI as a service (e.g. chat GPT)

Plan: Sell AI as a service (e.g. chat GPT)

• Generally trained on random data (more scalable)

Plan: Sell AI as a service (e.g. chat GPT)

• Generally trained on random data (more scalable)

Problem: Can competitor use queries to clone the model?

Plan: Sell AI as a service (e.g. chat GPT)

• Generally trained on random data (more scalable)

Problem: Can competitor use queries to clone the model?

Defense?? Block users who make weird query patterns

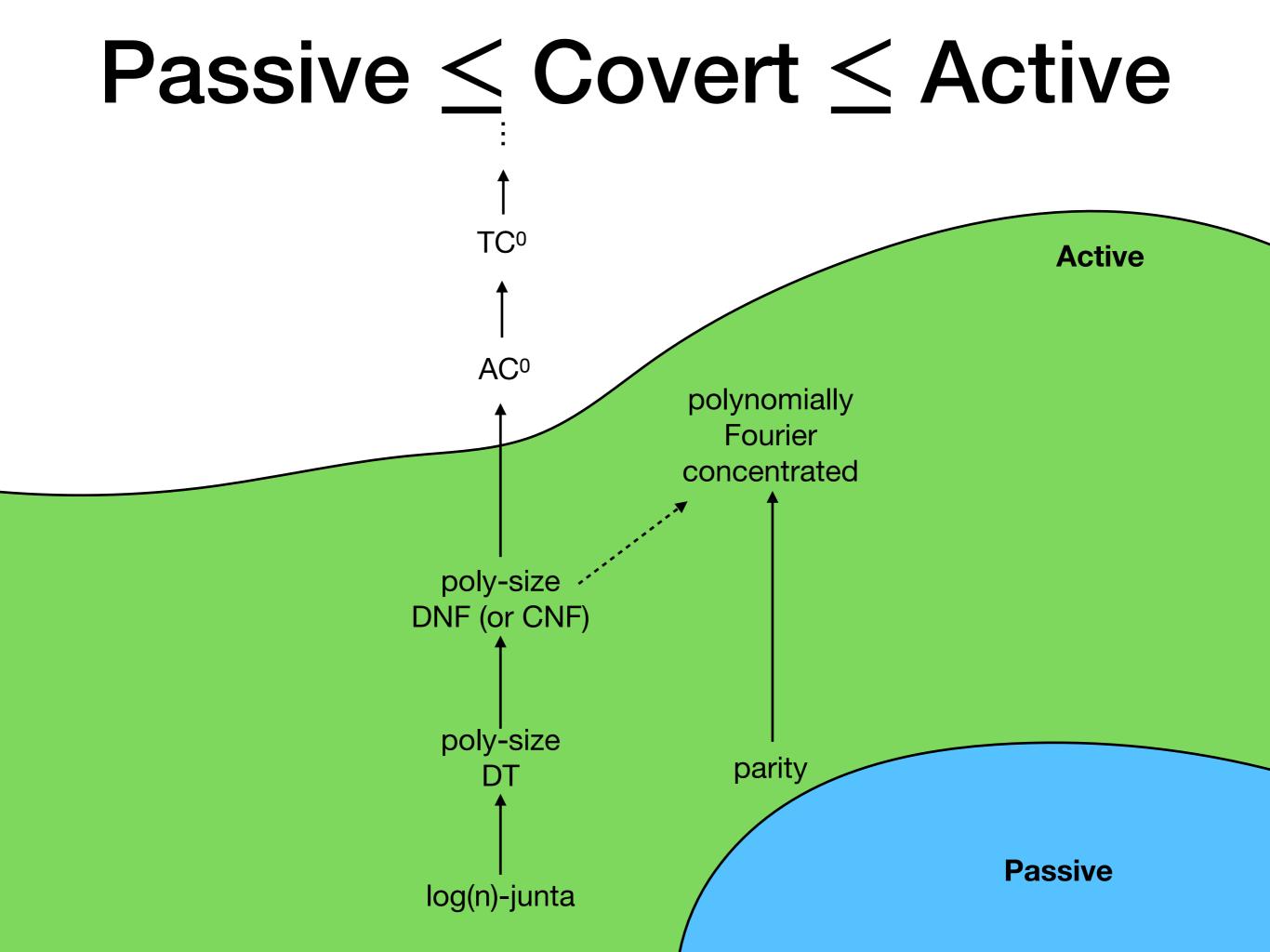
Plan: Sell AI as a service (e.g. chat GPT)

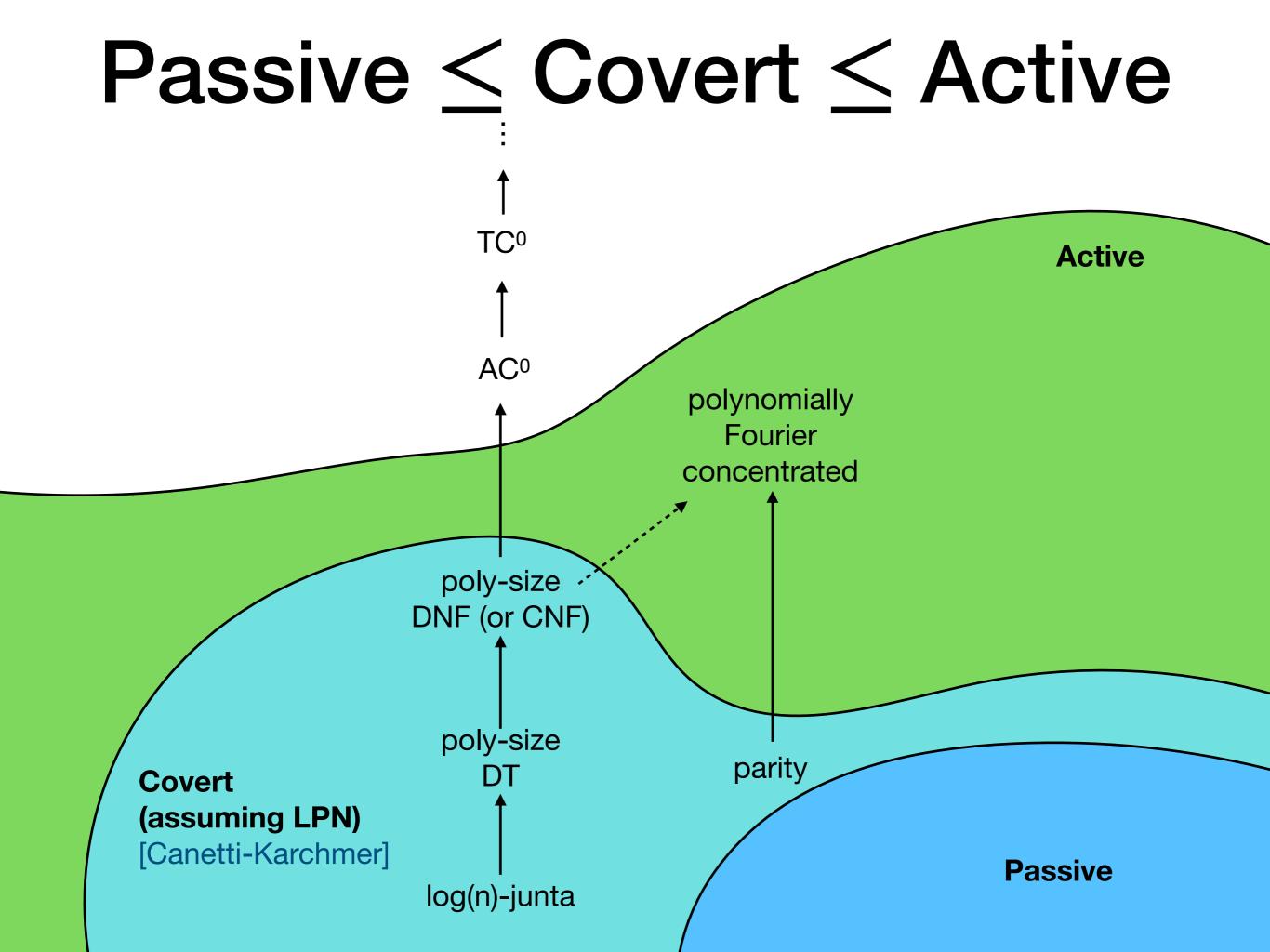
• Generally trained on random data (more scalable)

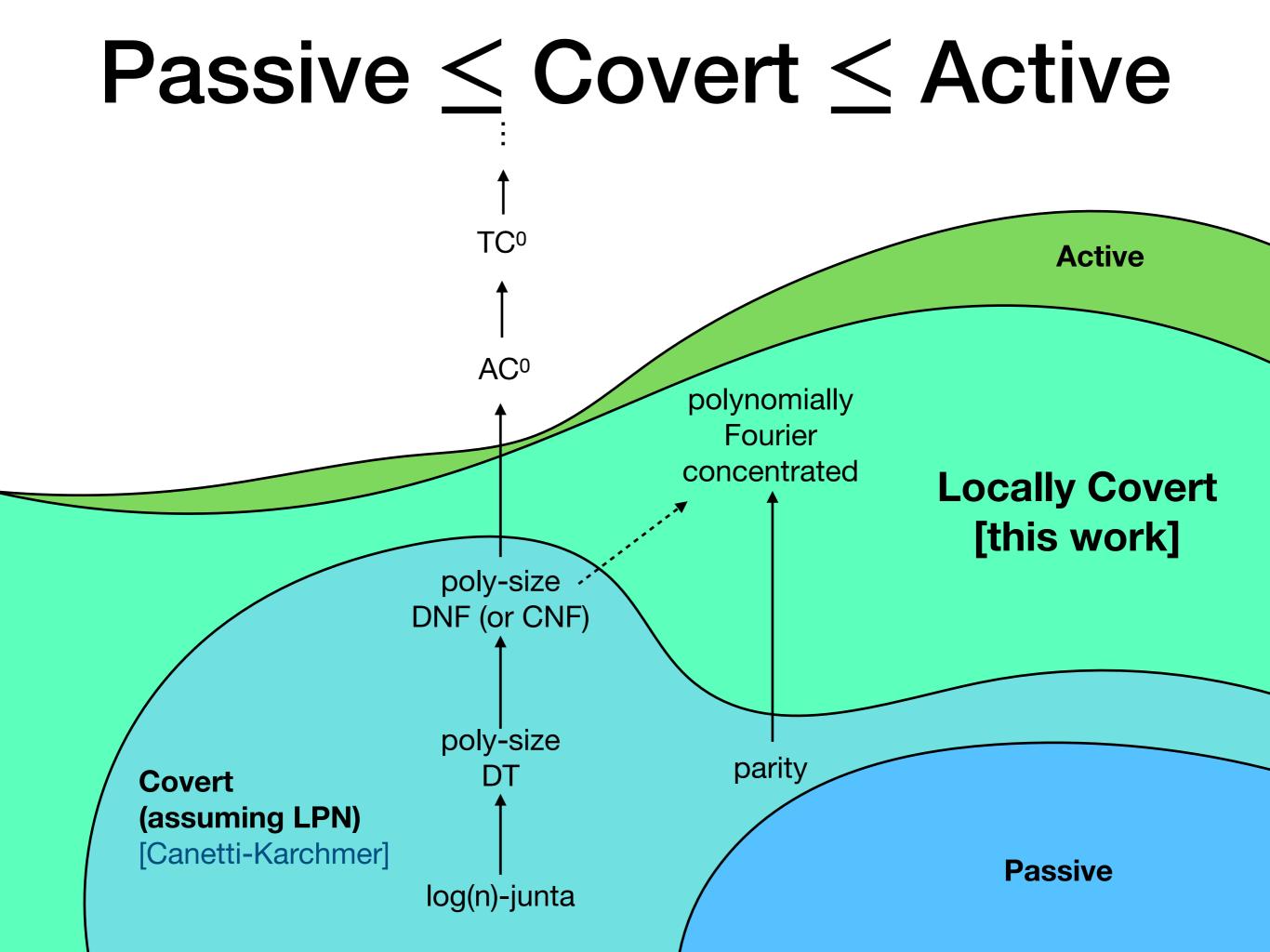
Problem: Can competitor use queries to clone the model?

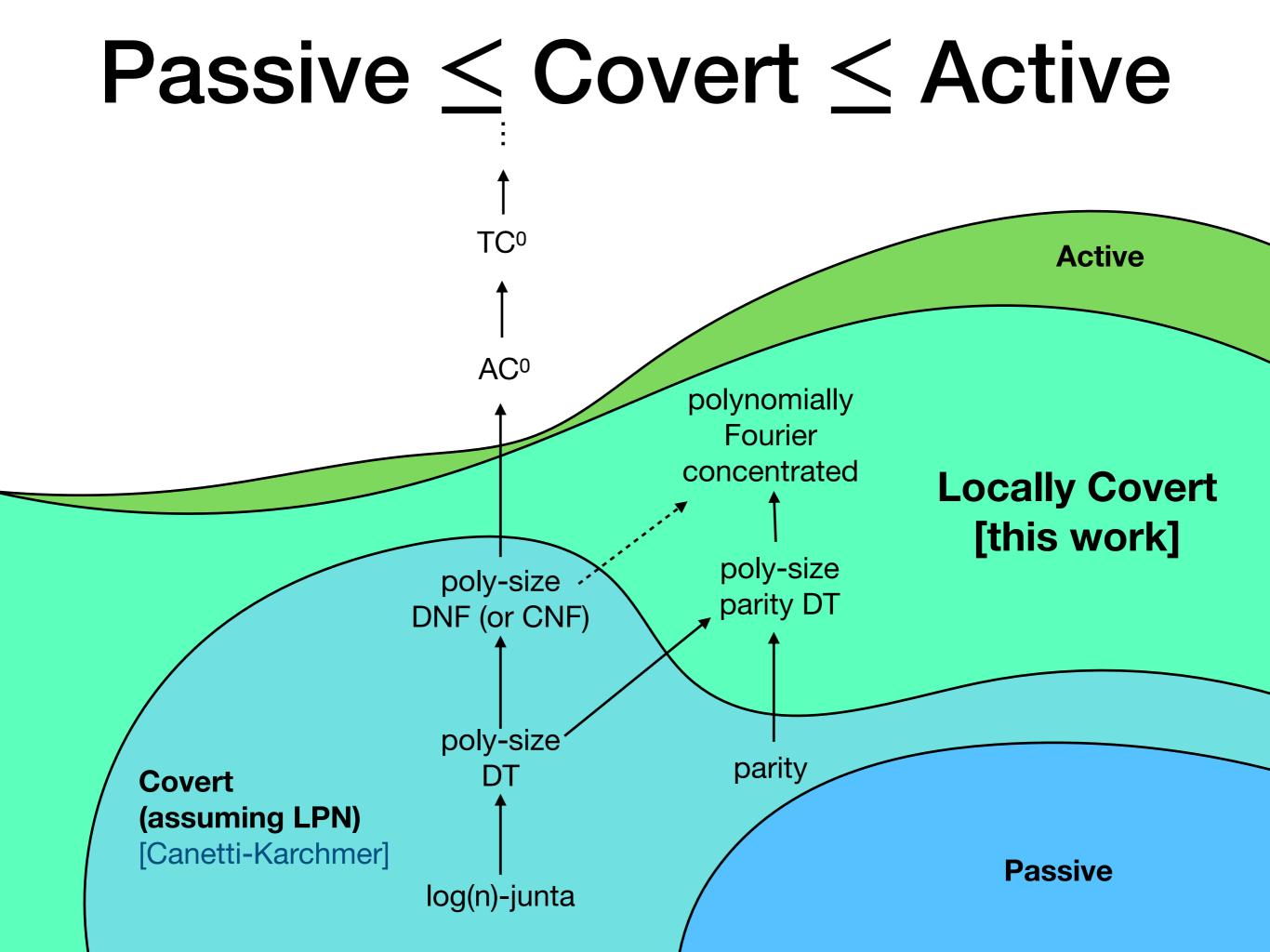
Defense?? Block users who make weird query patterns

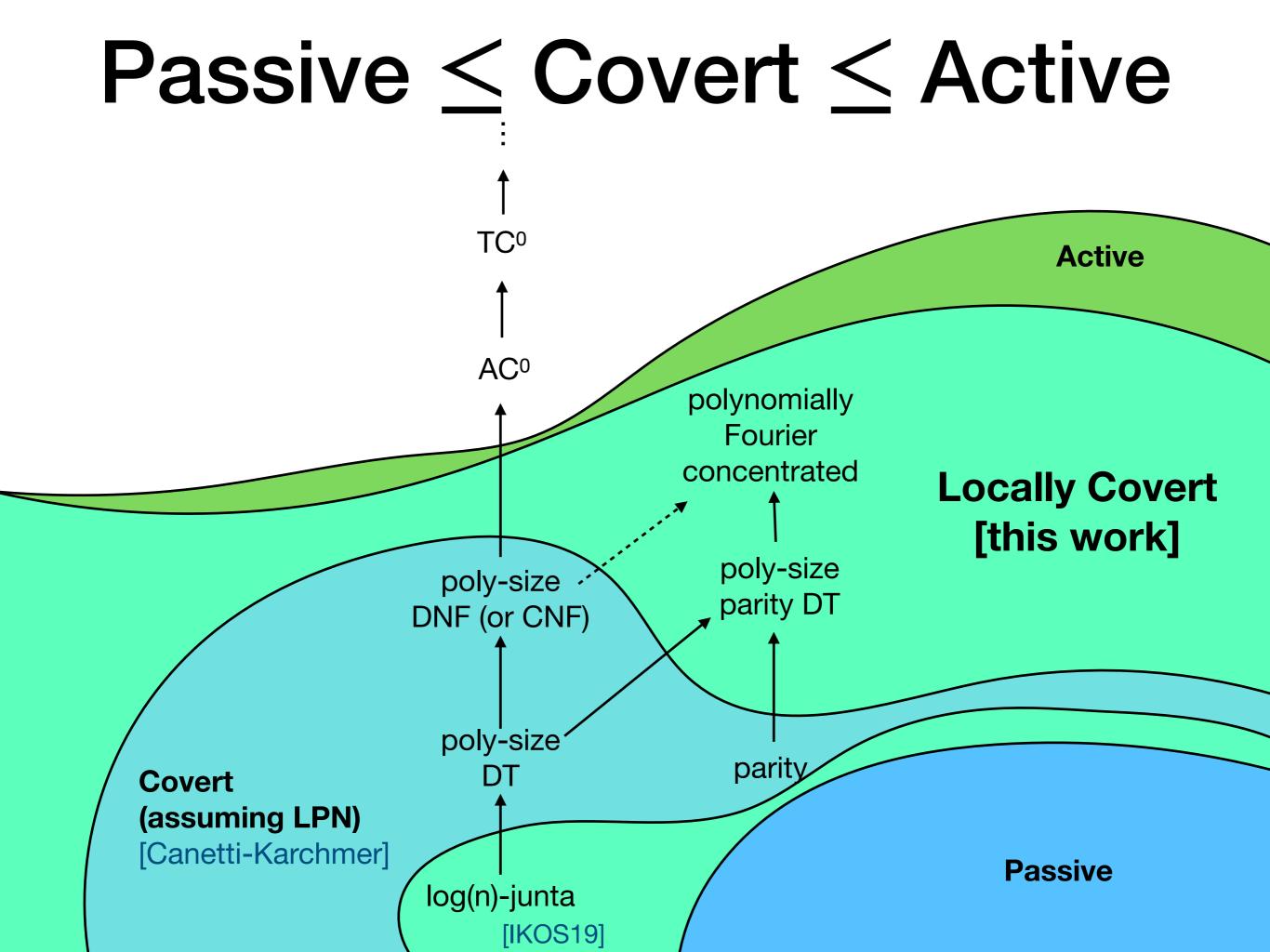
Can't really work against a covert learner 🤫

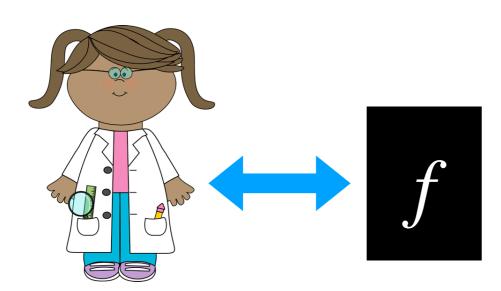






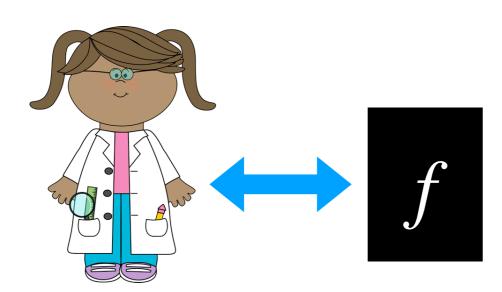






Learning Version:

Given oracle access to f, one can efficiently find all *parity functions* γ that are even weakly correlated with f

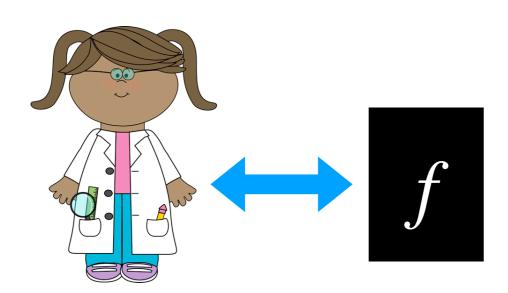


Learning Version:

Given oracle access to f, one can efficiently find all *parity functions* γ that are even weakly correlated with f

Crypto Version:

Let g be a OWF. Then $\langle \mathbf{x}, \mathbf{r} \rangle \pmod{2}$ is *hard-core* for $(g(\mathbf{x}), \mathbf{r})$.



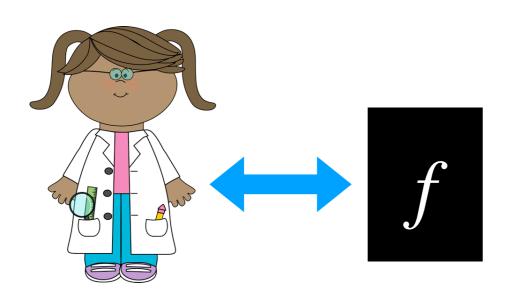
Crypto Version:

Let g be a OWF. Then $\langle \mathbf{x}, \mathbf{r} \rangle \pmod{2}$ is *hard-core* for $(g(\mathbf{x}), \mathbf{r})$.

Proof assuming Learning Version:

Learning Version:

Given oracle access to f, one can efficiently find all *parity functions* γ that are even weakly correlated with f



Learning Version:

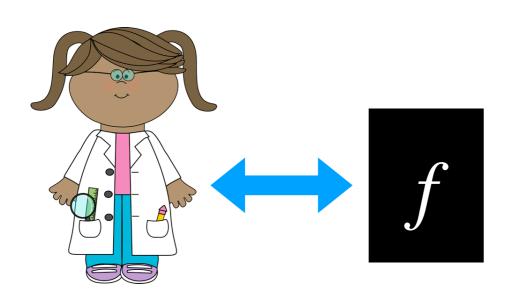
Given oracle access to f, one can efficiently find all *parity functions* γ that are even weakly correlated with f

Crypto Version:

Let g be a OWF. Then $\langle \mathbf{x}, \mathbf{r} \rangle \pmod{2}$ is *hard-core* for $(g(\mathbf{x}), \mathbf{r})$.

Proof assuming Learning Version:

1. $\langle \mathbf{x}, \cdot \rangle$ (mod 2) is a parity function.



Learning Version:

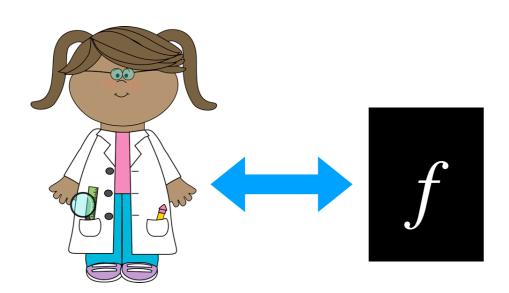
Given oracle access to f, one can efficiently find all *parity functions* γ that are even weakly correlated with f

Crypto Version:

Let g be a OWF. Then $\langle \mathbf{x}, \mathbf{r} \rangle \pmod{2}$ is *hard-core* for $(g(\mathbf{x}), \mathbf{r})$.

Proof assuming Learning Version:

- **1.** $\langle \mathbf{x}, \cdot \rangle$ (mod 2) is a parity function.
- **2.** If not hard-core, then an adversary $\mathscr{A}(g(\mathbf{x}), \cdot)$ weakly predicts $\langle \mathbf{x}, \mathbf{r} \rangle$.



Learning Version:

Given oracle access to f, one can efficiently find all *parity functions* γ that are even weakly correlated with f

Crypto Version:

Let g be a OWF. Then $\langle \mathbf{x}, \mathbf{r} \rangle \pmod{2}$ is *hard-core* for $(g(\mathbf{x}), \mathbf{r})$.

Proof assuming Learning Version:

- **1.** $\langle \mathbf{x}, \cdot \rangle$ (mod 2) is a parity function.
- **2.** If not hard-core, then an adversary $\mathscr{A}(g(\mathbf{x}), \cdot)$ weakly predicts $\langle \mathbf{x}, \mathbf{r} \rangle$.
- **3.** $GL^{\mathscr{A}(g(\mathbf{x}),\cdot)}$ outputs a list containing $\mathbf{x} \Longrightarrow$ contradicts that *g* is a OWF.

Rackoff's Algorithm

Rackoff's Algorithm

• Uses derandomization (querying all subset sums of $\approx \log(n)$ random vectors in \mathbb{F}_2^n)

Rackoff's Algorithm

- Uses derandomization (querying all subset sums of $\approx \log(n)$ random vectors in \mathbb{F}_2^n)
 - Queries are not statistically uniform

Rackoff's Algorithm

- Uses derandomization (querying all subset sums of $\approx \log(n)$ random vectors in \mathbb{F}_2^n)
 - Queries are not statistically uniform

The Original [Goldreich-Levin]

Rackoff's Algorithm

- Uses derandomization (querying all subset sums of $\approx \log(n)$ random vectors in \mathbb{F}_2^n)
 - Queries are not statistically uniform

The Original [Goldreich-Levin]

• Uses Fourier analysis

Rackoff's Algorithm

- Uses derandomization (querying all subset sums of $\approx \log(n)$ random vectors in \mathbb{F}_2^n)
 - Queries are not statistically uniform

The Original [Goldreich-Levin]

- Uses Fourier analysis
- Well-known in learning theory

Rackoff's Algorithm

- Uses derandomization (querying all subset sums of $\approx \log(n)$ random vectors in \mathbb{F}_2^n)
 - Queries are not statistically uniform

The Original [Goldreich-Levin]

- Uses Fourier analysis
- Well-known in learning theory

This Work:

Original algorithm is basically already 1-out-of-2 covert.

Rackoff's Algorithm

- Uses derandomization (querying all subset sums of $\approx \log(n)$ random vectors in \mathbb{F}_2^n)
 - Queries are not statistically uniform

The Original [Goldreich-Levin]

- Uses Fourier analysis
- Well-known in learning theory

This Work:

Original algorithm is basically already 1-out-of-2 covert.

Small modification gives (k-1)-out-of-k covertness.

(Locally) Covert Goldreich-Levin Algorithms

(Locally) Covert Goldreich-Levin Algorithms

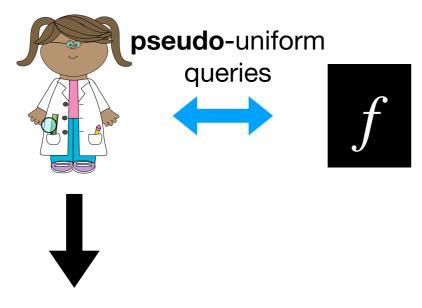
Previous Lemma: [Canetti-Karchmer] (following [Rackoff])

Assuming LPN is subexponentially hard, there is a **computationally** covert algorithm for **low-degree** Goldreich-Levin learning

(Locally) Covert Goldreich-Levin Algorithms

Previous Lemma: [Canetti-Karchmer] (following [Rackoff])

Assuming LPN is subexponentially hard, there is a **computationally** covert algorithm for **low-degree** Goldreich-Levin learning

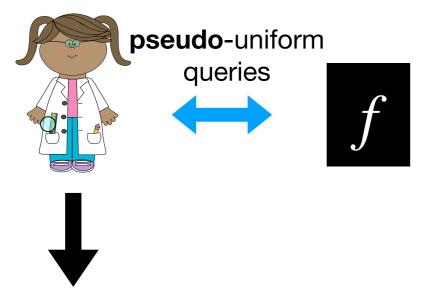


all **log(n)-variable** γ s.t. $|\hat{f}(\gamma)| \geq \epsilon$ (except with δ probability)

(Locally) Covert Goldreich-Levin Algorithms

Previous Lemma: [Canetti-Karchmer] (following [Rackoff])

Assuming LPN is subexponentially hard, there is a **computationally** covert algorithm for **low-degree** Goldreich-Levin learning



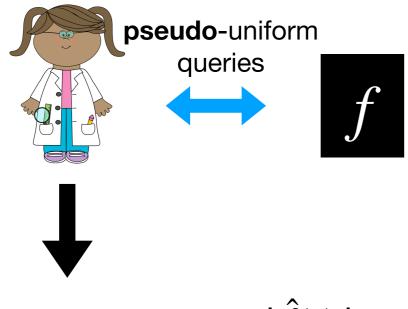
all **log(n)-variable** γ s.t. $|\hat{f}(\gamma)| \geq \epsilon$ (except with δ probability) **Our Main Theorem** (following [Goldreich-Levin]):

For any constant k, there is a **perfectly** (k - 1)-out-of-k covert algorithm for Goldreich-Levin learning

(Locally) Covert Goldreich-Levin Algorithms

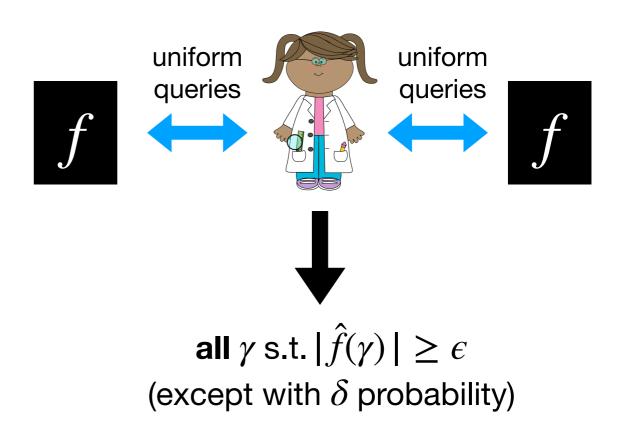
Previous Lemma: [Canetti-Karchmer] (following [Rackoff])

Assuming LPN is subexponentially hard, there is a **computationally** covert algorithm for **low-degree** Goldreich-Levin learning



all **log(n)-variable** γ s.t. $|\hat{f}(\gamma)| \ge \epsilon$ (except with δ probability) **Our Main Theorem** (following [Goldreich-Levin]):

For any constant k, there is a **perfectly** (k - 1)-out-of-k covert algorithm for Goldreich-Levin learning



Fact:
$$\sum_{\gamma \in \mathbb{F}_2^n} \hat{f}(\gamma)^2 = 1.$$

For $\gamma \in \mathbb{F}_2^n$, let $\hat{f}(\gamma) \in [-1,1]$ denote the *correlation* of f with the parity function $\langle \gamma, \cdot \rangle$. Call $\hat{f}(\gamma)^2$ the *weight* of γ .

Fact:
$$\sum_{\gamma \in \mathbb{F}_2^n} \hat{f}(\gamma)^2 = 1.$$
 Not many heavy parities.

Lemma: With queries to *f*, one can efficiently estimate weight(*p*) := $\sum_{s \in \mathbb{F}_2^{n-k}} \hat{f}(p \circ s)^2$ for any "prefix" $p \in \mathbb{F}_2^k$,

For $\gamma \in \mathbb{F}_2^n$, let $\hat{f}(\gamma) \in [-1,1]$ denote the *correlation* of f with the parity function $\langle \gamma, \cdot \rangle$. Call $\hat{f}(\gamma)^2$ the *weight* of γ .

Fact:
$$\sum_{\gamma \in \mathbb{F}_2^n} \hat{f}(\gamma)^2 = 1.$$
 Not many heavy parities.

Lemma: With queries to *f*, one can efficiently estimate weight(*p*) := $\sum_{s \in \mathbb{F}_2^{n-k}} \hat{f}(p \circ s)^2$ for any "prefix" $p \in \mathbb{F}_2^k$, concatenation

For $\gamma \in \mathbb{F}_2^n$, let $\hat{f}(\gamma) \in [-1,1]$ denote the *correlation* of f with the parity function $\langle \gamma, \cdot \rangle$. Call $\hat{f}(\gamma)^2$ the *weight* of γ .

Fact: $\sum_{\gamma \in \mathbb{F}_2^n} \hat{f}(\gamma)^2 = 1.$ Not many heavy parities. $\gamma \in \mathbb{F}_2^n$ Not many heavy prefixes.

Lemma: With queries to *f*, one can efficiently estimate weight(*p*) := $\sum_{s \in \mathbb{F}_2^{n-k}} \hat{f}(p \circ s)^2$ for any "prefix" $p \in \mathbb{F}_2^k$, concatenation

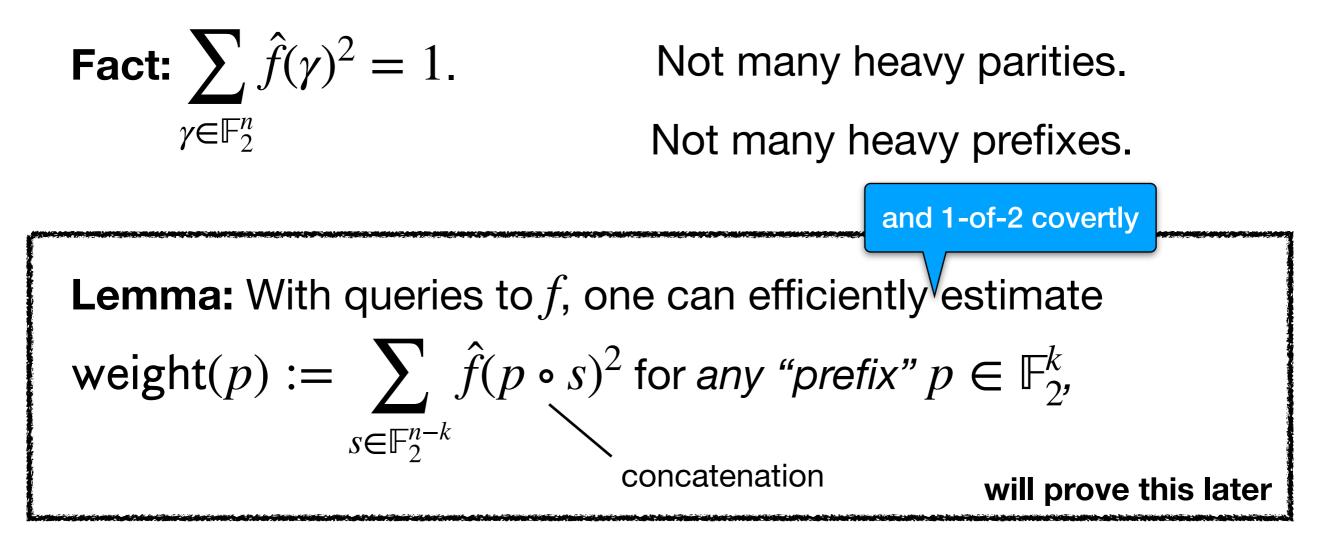
For $\gamma \in \mathbb{F}_2^n$, let $\hat{f}(\gamma) \in [-1,1]$ denote the *correlation* of f with the parity function $\langle \gamma, \cdot \rangle$. Call $\hat{f}(\gamma)^2$ the *weight* of γ .

Fact: $\sum_{\gamma \in \mathbb{F}_2^n} \hat{f}(\gamma)^2 = 1.$ Not many heavy parities. $\gamma \in \mathbb{F}_2^n$ Not many heavy prefixes.

and 1-of-2 covertly

$$weight(p) := \sum_{s \in \mathbb{F}_2^{n-k}} \hat{f}(p \circ s)^2 \text{ for any "prefix" } p \in \mathbb{F}_2^k,$$

concatenation



- 1. Weigh each prefix in the list and throw away light prefixes (those with weight $< \epsilon$)
 - → At most $1/\epsilon$ prefixes.

- 1. Weigh each prefix in the list and throw away light prefixes (those with weight $< \epsilon$)
 - At most $1/\epsilon$ prefixes.
- 2. Replace remaining prefixes p by $p \circ 0$ and $p \circ 1$
 - → At most $2/\epsilon$ prefixes

- 1. Weigh each prefix in the list and throw away light prefixes (those with weight $< \epsilon$)
 - At most $1/\epsilon$ prefixes.
- 2. Replace remaining prefixes p by $p \circ 0$ and $p \circ 1$
 - → At most $2/\epsilon$ prefixes
- 3. Repeat until prefixes are *n*-bit strings.

How To Weigh Prefixes

How To Weigh Prefixes

Lemma:

weight(
$$p$$
) := $\sum_{s \in \mathbb{F}_2^{n-k}} \hat{f}(p \circ s)^2$ for any "prefix" $p \in \mathbb{F}_2^k$.

How To Weigh Prefixes

Lemma:

With queries to f, one can efficiently estimate

weight(
$$p$$
) := $\sum_{s \in \mathbb{F}_2^{n-k}} \hat{f}(p \circ s)^2$ for any "prefix" $p \in \mathbb{F}_2^k$.

More Generally:

weight(A) :=
$$\sum_{\gamma \in A} \hat{f}(\gamma)^2$$
 for any affine subspace $A \subseteq \mathbb{F}_2^n$

How To Weigh Prefixes Affine Spaces

Lemma:

With queries to f, one can efficiently estimate

weight(
$$p$$
) := $\sum_{s \in \mathbb{F}_2^{n-k}} \hat{f}(p \circ s)^2$ for any "prefix" $p \in \mathbb{F}_2^k$.

More Generally:

weight(A) :=
$$\sum_{\gamma \in A} \hat{f}(\gamma)^2$$
 for any affine subspace $A \subseteq \mathbb{F}_2^n$

How To Weigh Prefixes Affine Spaces

Lemma:

and 1-of-2 covertly

With queries to f, one can efficiently estimate

weight(
$$p$$
) := $\sum_{s \in \mathbb{F}_2^{n-k}} \hat{f}(p \circ s)^2$ for any "prefix" $p \in \mathbb{F}_2^k$.

More Generally:

and 1-of-2 covertly

weight(A) :=
$$\sum_{\gamma \in A} \hat{f}(\gamma)^2$$
 for any affine subspace $A \subseteq \mathbb{F}_2^n$

Lemma:

For any affine subspace $A \subseteq \mathbb{F}_2^n$, $A = \gamma^* + V$, one can efficiently estimate weight $(A) := \sum_{\gamma \in A} \hat{f}(\gamma)^2$

Lemma:

For any affine subspace $A \subseteq \mathbb{F}_2^n$, $A = \gamma^* + V$, one can efficiently estimate weight $(A) := \sum_{\gamma \in A} \hat{f}(\gamma)^2$

Formula:

$$\sum_{\gamma \in A} \hat{f}(\gamma)^2 = \mathbb{E}_{\substack{x_1 + x_2 \in V^{\perp}}} \left[f(x_1) \cdot f(x_2) \cdot \gamma^*(x_1 + x_2) \right]$$

Lemma:

For any affine subspace $A \subseteq \mathbb{F}_2^n$, $A = \gamma^* + V$, one can efficiently estimate weight $(A) := \sum_{\gamma \in A} \hat{f}(\gamma)^2$

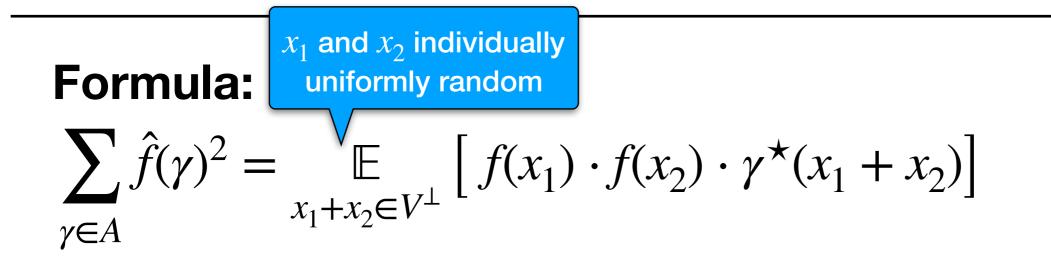
Formula:

$$\sum_{\gamma \in A} \hat{f}(\gamma)^2 = \mathbb{E}_{\substack{x_1 + x_2 \in V^{\perp}}} \left[f(x_1) \cdot f(x_2) \cdot \gamma^*(x_1 + x_2) \right]$$

Expectation can be directly empirically estimated

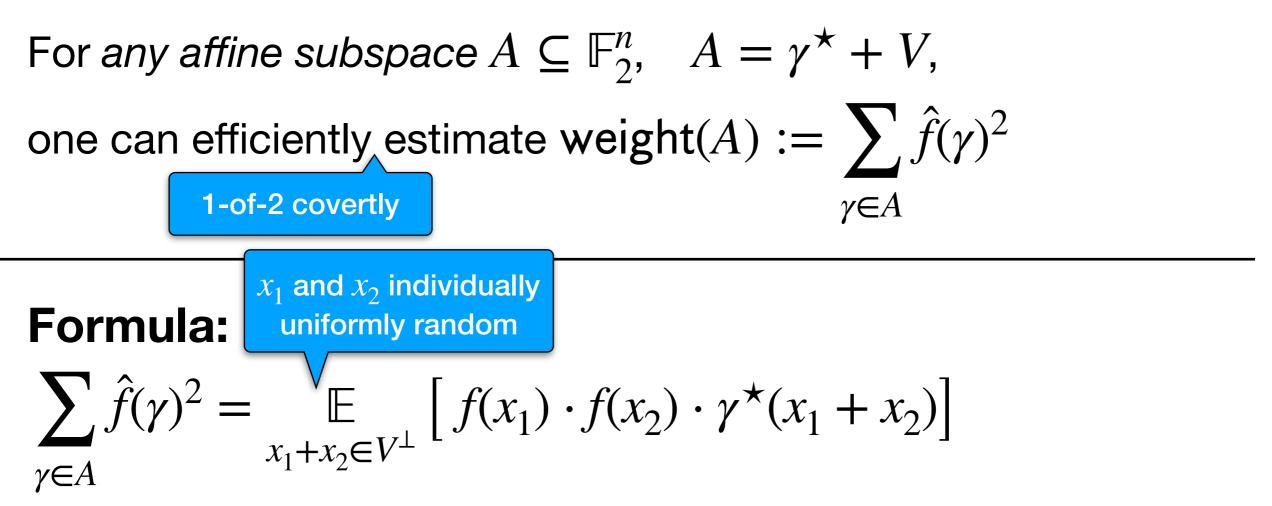
Lemma:

For any affine subspace $A \subseteq \mathbb{F}_2^n$, $A = \gamma^* + V$, one can efficiently estimate weight $(A) := \sum_{\gamma \in A} \hat{f}(\gamma)^2$



Expectation can be directly empirically estimated

Lemma:



Expectation can be directly empirically estimated

Previous formula naturally generalizes: If $A = \gamma^* + V$ is an affine subspace of \mathbb{F}_2^n , then $\sum \hat{f}(\gamma)^k = \mathbb{E} \left[f(x_1) \cdots f(x_k) \cdot \gamma^* (x_1 + \cdots x_k) \right]$

$$\sum_{\gamma \in A} f(\gamma)^{\kappa} = \lim_{x_1 + \dots + x_k \in V^{\perp}} \left[f(x_1) \cdots f(x_k) \cdot \gamma^{\wedge} (x_1 + \cdots + x_k) \right]$$

Previous formula naturally generalizes: If $A = \gamma^* + V$ is an affine subspace of \mathbb{F}_2^n , then

$$\sum_{\substack{\gamma \in A \\ \land}} \hat{f}(\gamma)^k = \mathbb{E}_{\substack{x_1 + \dots + x_k \in V^{\perp}}} \left[f(x_1) \cdots f(x_k) \cdot \gamma^{\star}(x_1 + \cdots + x_k) \right]$$

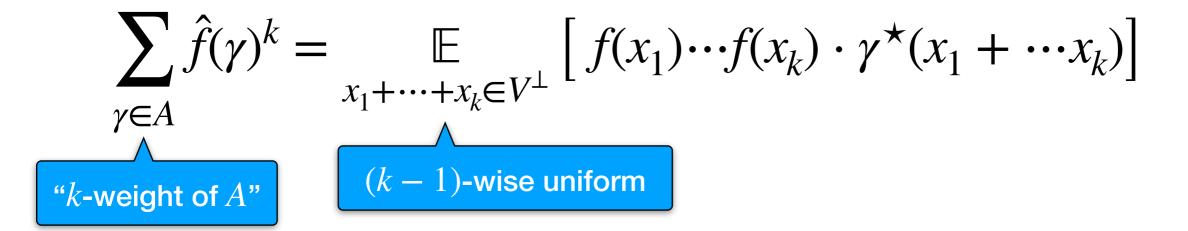
c-weight of *A*"

Previous formula naturally generalizes: If $A = \gamma^* + V$ is an affine subspace of \mathbb{F}_2^n , then $\sum_{\gamma \in A} \hat{f}(\gamma)^k = \mathop{\mathbb{E}}_{x_1 + \dots + x_k \in V^{\perp}} \left[f(x_1) \cdots f(x_k) \cdot \gamma^*(x_1 + \cdots x_k) \right]$ "*k*-weight of *A*"

 To get (k - 1)-of-k covert GL, apply same strategy, using k-weight instead of 2-weight

Previous formula naturally generalizes:

If $A = \gamma^* + V$ is an affine subspace of \mathbb{F}_2^n , then



 To get (k - 1)-of-k covert GL, apply same strategy, using k-weight instead of 2-weight

Strategy: Maintain a list of candidate *l*-bit prefixes of heavy parities γ (those with $\hat{f}(\gamma)^2 \ge \epsilon$), starting with $\{0,1\}$.

1. Weigh each prefix in the list and throw away light prefixes (those with *k*-weight < $e^{k/2}$)

- 1. Weigh each prefix in the list and throw away light prefixes (those with *k*-weight $< e^{k/2}$)
 - At most $1/e^{k/2}$ prefixes because 2-weight > k-weight

- 1. Weigh each prefix in the list and throw away light prefixes (those with *k*-weight $< e^{k/2}$)
 - At most $1/e^{k/2}$ prefixes because 2-weight > k-weight
- 2. Replace remaining prefixes p by $p \circ 0$ and $p \circ 1$

- 1. Weigh each prefix in the list and throw away light prefixes (those with *k*-weight $< e^{k/2}$)
 - At most $1/e^{k/2}$ prefixes because 2-weight > k-weight
- 2. Replace remaining prefixes p by $p \circ 0$ and $p \circ 1$
 - → At most $2/e^{k/2}$ prefixes

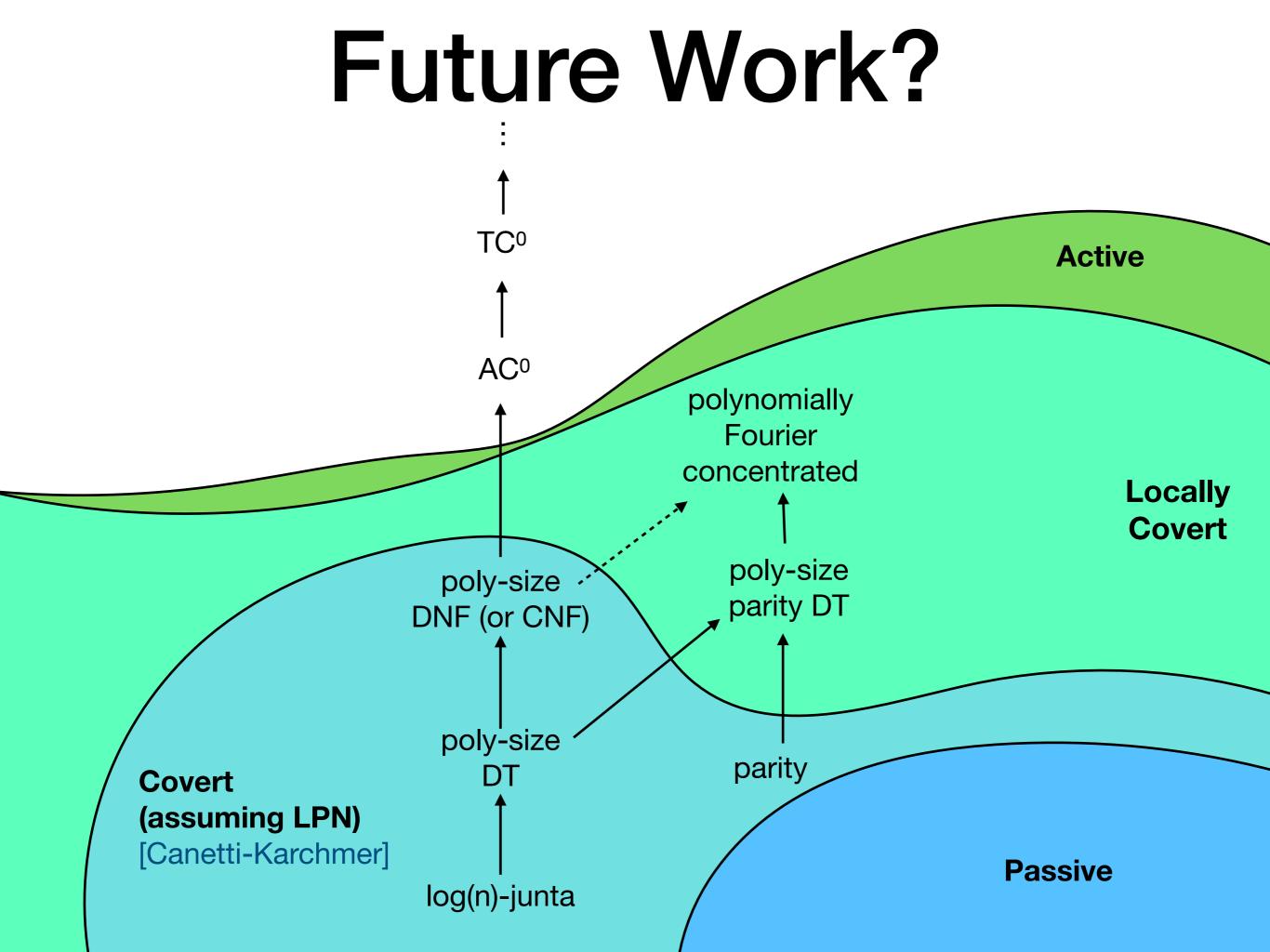
Strategy: Maintain a list of candidate *l*-bit prefixes of heavy parities γ (those with $\hat{f}(\gamma)^2 \ge \epsilon$), starting with $\{0,1\}$.

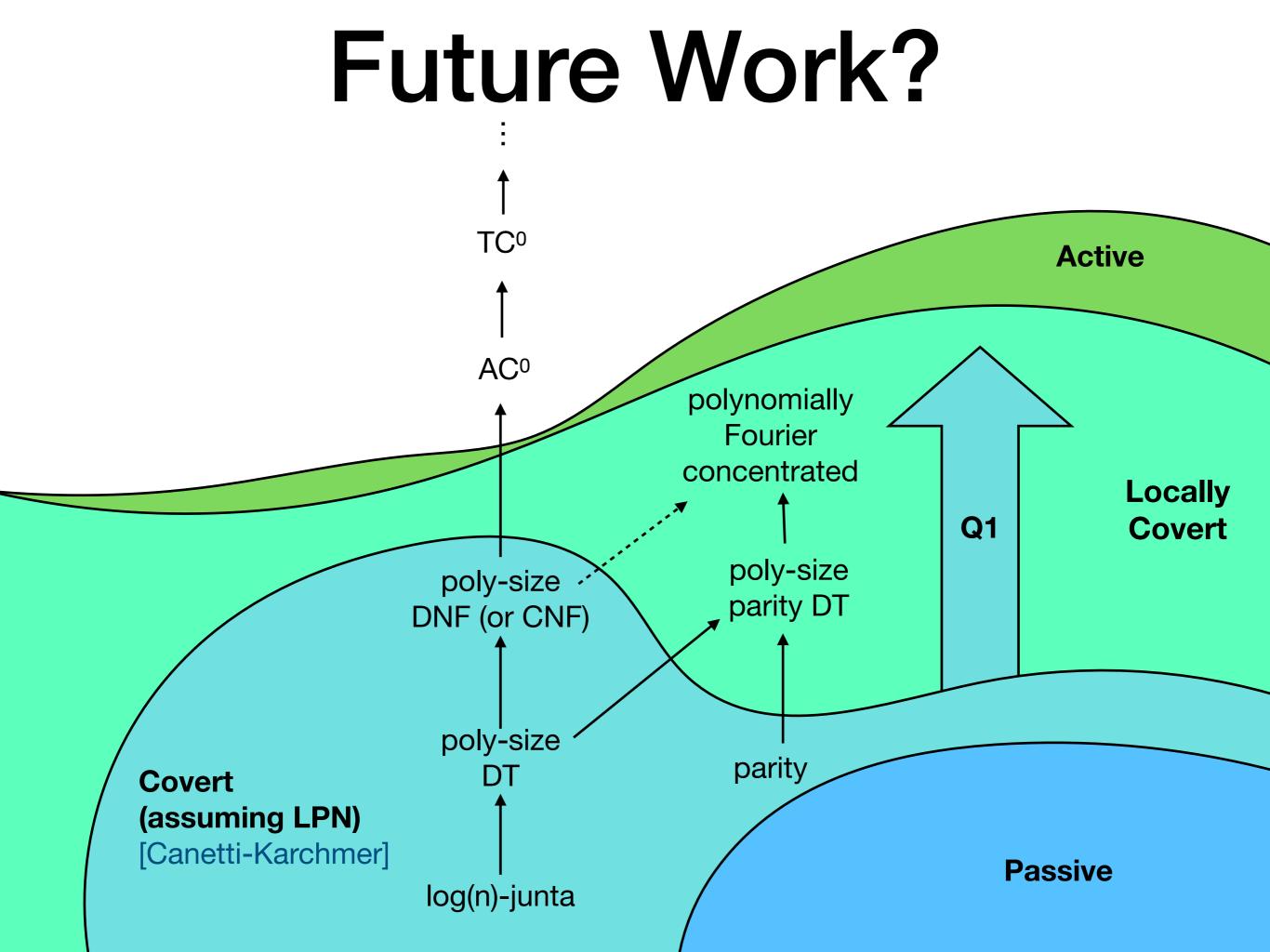
- 1. Weigh each prefix in the list and throw away light prefixes (those with *k*-weight $< e^{k/2}$)
 - At most $1/e^{k/2}$ prefixes because 2-weight > k-weight
- 2. Replace remaining prefixes p by $p \circ 0$ and $p \circ 1$

At most
$$2/e^{k/2}$$
 prefixes

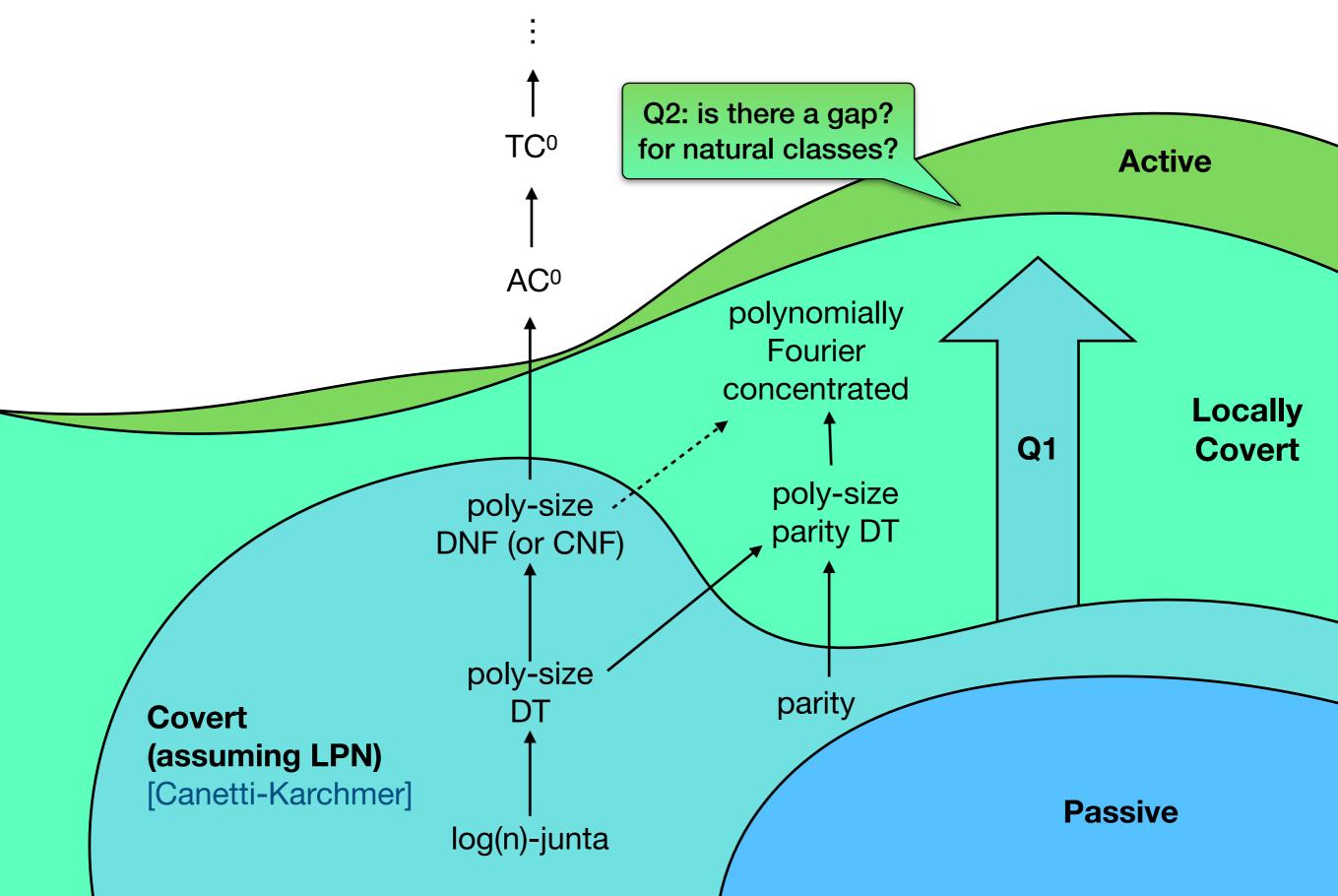
3. Repeat until prefixes are *n*-bit strings.

- 1. Weigh each prefix in the list and throw away light prefixes (those with *k*-weight $< e^{k/2}$)
 - At most $1/e^{k/2}$ prefixes because 2-weight > k-weight
- 2. Replace remaining prefixes p by $p \circ 0$ and $p \circ 1$
 - At most $2/\epsilon^{k/2}$ prefixes \leq running time is exponential in k
- 3. Repeat until prefixes are *n*-bit strings.

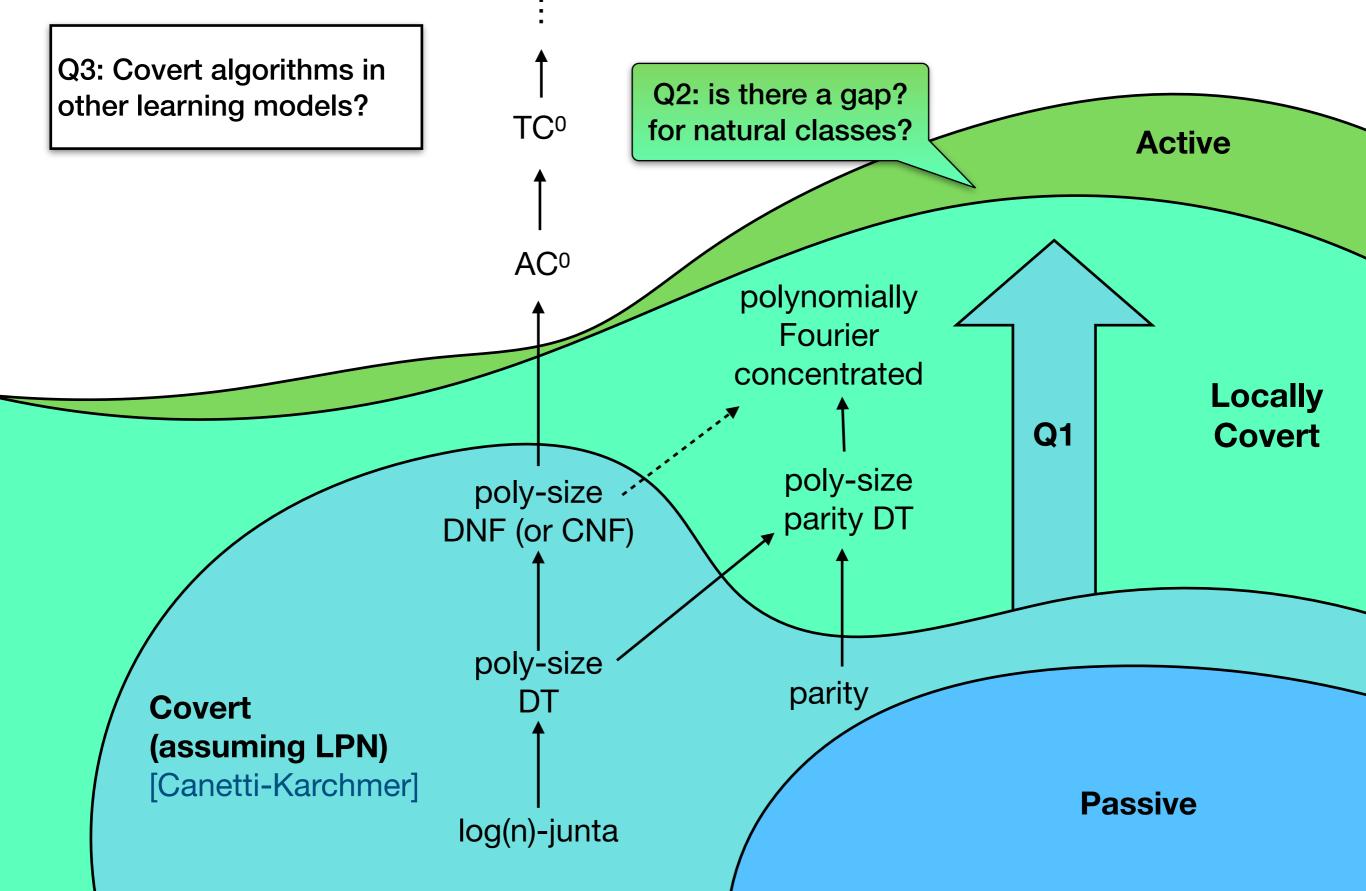




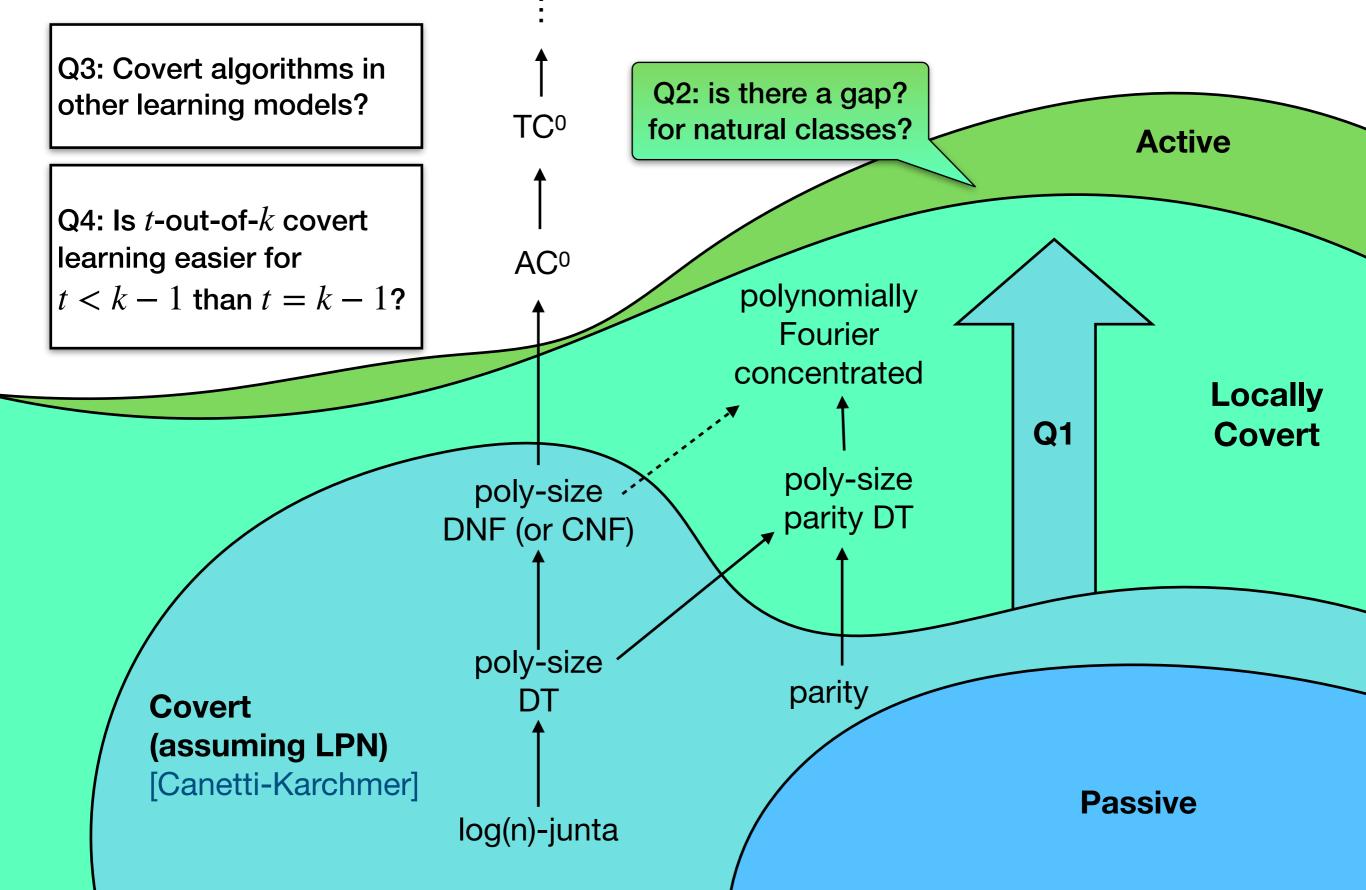
Future Work?



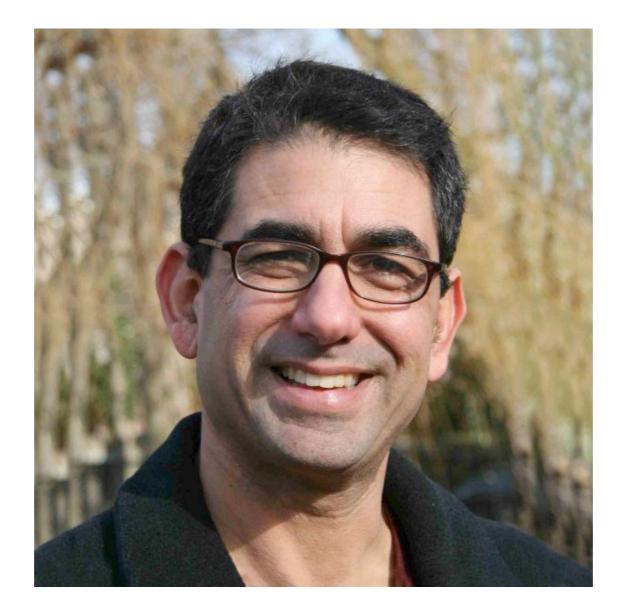
Future Work?



Future Work?



Thanks & Happy Birthday!



ia.cr/2023/392

Thanks & Happy Birthday!

ia.cr/2023/392